2020 CottonGen Citations

 Peer-reviewed papers/books citing CottonGen in 2020 (102) with links to publications. 
 

  1. Yu, J., Xie, Q., Li, C., Dong, Y., Zhu, S., & Chen, J. (2020). Comprehensive characterization and gene expression patterns of LBD gene family in Gossypium. Planta, 251, 1-16.
    Cited By
  2. Hussain, A., Tanveer, R., Mustafa, G., Farooq, M., Amin, I., & Mansoor, S. (2020). Comparative phylogenetic analysis of aquaporins provides insight into the gene family expansion and evolution in plants and their role in drought tolerant and susceptible chickpea cultivars. Genomics, 112(1), 263-275.
    Cited By
  3. Pan, Y., Meng, F., & Wang, X. (2020). Sequencing multiple cotton genomes reveals complex structures and lays foundation for breeding. Frontiers in Plant Science, 11, 560096.
    Cited By
  4. Malik, W. A., Wang, X., Wang, X., Shu, N., Cui, R., Chen, X., ... & Ye, W. (2020). Genome-wide expression analysis suggests glutaredoxin genes response to various stresses in cotton. International journal of biological macromolecules, 153, 470-491.
    Cited By
  5. Cao, J. F., Huang, J. Q., Liu, X., Huang, C. C., Zheng, Z. S., Zhang, X. F., ... & Chen, Z. W. (2020). Genome-wide characterization of the GRF family and their roles in response to salt stress in Gossypium. BMC genomics, 21, 1-16.
    Cited By
  6. Song, X., Nie, F., Chen, W., Ma, X., Gong, K., Yang, Q., ... & Wang, X. (2020). Coriander Genomics Database: a genomic, transcriptomic, and metabolic database for coriander. Horticulture research, 7.
    Cited By
  7. Long, L., Zhao, J. R., Guo, D. D., Ma, X. N., Xu, F. C., Yang, W. W., & Gao, W. (2020). Identification of NHXs in Gossypium species and the positive role of GhNHX1 in salt tolerance. BMC plant biology, 20, 1-13.
    Cited By
  8. Grover, C. E., Pan, M., Yuan, D., Arick, M. A., Hu, G., Brase, L., ... & Udall, J. A. (2020). The Gossypium longicalyx genome as a resource for cotton breeding and evolution. G3: Genes, Genomes, Genetics, 10(5), 1457-1467.
    Cited By
  9.  Wang, D., Fan, W., Guo, X., Wu, K., Zhou, S., Chen, Z., ... & Zhou, Y. (2020). MaGenDB: a functional genomics hub for Malvaceae plants. Nucleic acids research, 48(D1), D1076-D1084.
    Cited By
  10. Gallagher, J. P., Grover, C. E., Hu, G., Jareczek, J. J., & Wendel, J. F. (2020). Conservation and divergence in duplicated fiber coexpression networks accompanying domestication of the polyploid Gossypium hirsutum L. G3: Genes, Genomes, Genetics, 10(8), 2879-2892.
    Cited By
  11. Chattha, W. S., Atif, R. M., Iqbal, M., Shafqat, W., Farooq, M. A., & Shakeel, A. (2020). Genome-wide identification and evolution of Dof transcription factor family in cultivated and ancestral cotton species. Genomics, 112(6), 4155-4170.
    Cited By
  12. Gong, Y., Kang, N. K., Kim, Y. U., Wang, Z., Wei, L., Xin, Y., ... & Xu, J. (2020). The NanDeSyn database for Nannochloropsis systems and synthetic biology. The Plant Journal, 104(6), 1736-1745.
    Cited By
  13. Liu, W., Song, C., Ren, Z., Zhang, Z., Pei, X., Liu, Y., ... & Li, W. (2020). Genome-wide association study reveals the genetic basis of fiber quality traits in upland cotton (Gossypium hirsutum L.). BMC plant biology, 20, 1-13.
    Cited By
  14. Wang, W., Chen, D., Liu, D., Cheng, Y., Zhang, X., Song, L., ... & Shen, F. (2020). Comprehensive analysis of the Gossypium hirsutum L. respiratory burst oxidase homolog (Ghrboh) gene family. BMC genomics, 21(1), 1-19.
    Cited By
  15. Zhao, H., Wang, J., Qu, Y., Peng, R., Magwanga, R. O., Liu, F., & Huang, J. (2020). Transcriptomic and proteomic analyses of a new cytoplasmic male sterile line with a wild Gossypium bickii genetic background. BMC genomics, 21, 1-17.
    Cited By
  16. Meng, F., Pan, Y., Wang, J., Yu, J., Liu, C., Zhang, Z., ... & Wang, X. (2020). Cotton duplicated genes produced by polyploidy show significantly elevated and unbalanced evolutionary rates, overwhelmingly perturbing gene tree topology. Frontiers in genetics, 11, 239.
    Cited By
  17. Li, Z., Su, Q., Xu, M., You, J., Khan, A. Q., Li, J., ... & You, C. (2020). Phenylpropanoid metabolism and pigmentation show divergent patterns between brown color and green color cottons as revealed by metabolic and gene expression analyses. Journal of Cotton Research, 3, 1-11.
    Cited By
  18. Du, Y., Li, K., Wang, X., Kaushik, A. C., Junaid, M., & Wei, D. (2020). Identification of chlorprothixene as a potential drug that induces apoptosis and autophagic cell death in acute myeloid leukemia cells. The FEBS journal, 287(8), 1645-1665.
    Cited By
  19. Luo, X., Tian, T., Tan, X., Zheng, Y., Xie, C., Xu, Y., & Yang, X. (2020). VdNPS, a nonribosomal peptide synthetase, is involved in regulating virulence in Verticillium dahliae. Phytopathology, 110(8), 1398-1409.
    Cited By
  20. Rathnayake, R., Sahibdeen, S., Udawela, K., Weebadde, C., Weerakoon, W., & Sooriyapathirana, S. (2020). Application of Pedimap: a pedigree visualization tool to facilitate the decisioning of rice breeding in Sri Lanka. Scientific Reports, 10(1), 14255.
    Cited By
  21. Grover, C. E., Yoo, M. J., Lin, M., Murphy, M. D., Harker, D. B., Byers, R. L., ... & Wendel, J. F. (2020). Genetic analysis of the transition from wild to domesticated cotton (Gossypium hirsutum L.). G3: Genes, Genomes, Genetics, 10(2), 731-754.
    Cited By
  22. Hussain, A., Farooq, M., Naqvi, R. Z., Amin, I., Pervaiz, K., Saeed, M., ... & Mansoor, S. (2020). Genome-wide identification and classification of resistance genes predicted several decoy domains in Gossypium sp. Plant gene, 24, 100250.
    Cited By
  23. Arias-Baldrich, C., Silva, M. C., Bergeretti, F., Chaves, I., Miguel, C., Saibo, N. J., ... & Barros, P. M. (2020). CorkOakDB—the cork oak genome database portal. Database, 2020, baaa114.
    Cited By
  24. Ma, L., Su, Y., NIE, H., CUI, Y., CHENG, C., IJAZ, B., & HUA, J. (2020). QTL and genetic analysis controlling fiber quality traits using paternal backcross population in upland cotton. Journal of Cotton Research, 3, 1-11.
    Cited By
  25. Hao, P., Wang, H., Ma, L., Wu, A., Chen, P., Cheng, S., ... & Yu, S. (2020). Genome-wide identification and characterization of multiple C2 domains and transmembrane region proteins in Gossypium hirsutum. BMC genomics, 21, 1-16.
    Cited By
  26. Vignesh Kumar, B., Backiyarani, S., Chandrasekar, A., Saranya, S., Ramajayam, D., Saraswathi, M. S., ... & Uma, S. (2020). Strengthening of banana breeding through data digitalization. Database, 2020, baz145.
    Cited By
  27. Chen, F., Guo, Y., Chen, L., Gan, X., Liu, M., Li, J., & XU, W. (2020). Global identification of genes associated with xylan biosynthesis in cotton fiber. Journal of Cotton Research, 3(1), 1-15.
    Cited By
  28. Abdelraheem, A., Fang, D. D., Dever, J., & Zhang, J. (2020). QTL analysis of agronomic, fiber quality, and abiotic stress tolerance traits in a recombinant inbred population of pima cotton. Crop Science, 60(4), 1823-1843.
    Cited By
  29. Feng, L., Zhou, C., Su, Q., Xu, M., Yue, H., Zhang, S., & Zhou, B. (2020). Fine-mapping and candidate gene analysis of qFS-Chr. D02, a QTL for fibre strength introgressed from a semi-wild cotton into Gossypium hirsutum. Plant Science, 297, 110524.
    Cited By
  30. Guo, H., Guo, H., Zhang, L., Fan, Y., Wu, J., Tang, Z., ... & Zeng, F. (2020). Dynamic transcriptome analysis reveals uncharacterized complex regulatory pathway underlying genotype-recalcitrant somatic embryogenesis transdifferentiation in Cotton. Genes, 11(5), 519.
    Cited By
  31. Ullah, A., Ul Qamar, M. T., Nisar, M., Hazrat, A., Rahim, G., Khan, A. H., ... & Yang, X. (2020). Characterization of a novel cotton MYB gene, GhMYB108-like responsive to abiotic stresses. Molecular biology reports, 47, 1573-1581.
    Cited By
  32. de Moura, S. M., Rossi, M. L., Artico, S., Grossi-de-Sa, M. F., Martinelli, A. P., & Alves-Ferreira, M. (2020). Characterization of floral morphoanatomy and identification of marker genes preferentially expressed during specific stages of cotton flower development. Planta, 252, 1-22.
    Cited By
  33. Nie, H., Cheng, C., & Hua, J. (2020). Mitochondrial proteomic analysis reveals that proteins relate to oxidoreductase activity play a central role in pollen fertility in cotton. Journal of proteomics, 225, 103861.
    Cited By
  34. Imran, M., Shafiq, S., Naeem, M. K., Widemann, E., Munir, M. Z., Jensen, K. B., & Wang, R. R. C. (2020). Histone deacetylase (HDAC) gene family in allotetraploid cotton and its diploid progenitors: In silico identification, molecular characterization, and gene expression analysis under multiple abiotic stresses, DNA damage and phytohormone treatments. International Journal of Molecular Sciences, 21(1), 321.
    Cited By
  35. Chen, Q., Wang, W., Wang, C., Zhang, M., Yu, J., Zhang, Y., ... & Wang, B. (2020). Validation of QTLs for fiber quality introgressed from Gossypium mustelinum by selective genotyping. G3: Genes, Genomes, Genetics, 10(7), 2377-2384.
    Cited By
  36. Cheng, X. Q., Zhang, X. Y., Xue, F., Zhu, S. H., Li, Y. J., Zhu, Q. H., ... & Sun, J. (2020). Characterization and transcriptome analysis of a dominant genic male sterile cotton mutant. BMC Plant Biology, 20(1), 1-14.
    Cited By
  37. Cheng, X. Q., Zhang, X. Y., Xue, F., Zhu, S. H., Li, Y. J., Zhu, Q. H., ... & Sun, J. (2020). Characterization and transcriptome analysis of a dominant genic male sterile cotton mutant. BMC Plant Biology, 20(1), 1-14.
    Cited By
  38. Xiong, X. P., Sun, S. C., Zhang, X. Y., Li, Y. J., Liu, F., Zhu, Q. H., ... & Sun, J. (2020). GhWRKY70D13 regulates resistance to Verticillium dahliae in cotton through the ethylene and jasmonic acid signaling pathways. Frontiers in Plant Science, 11, 69.
    Cited By
  39. Liu, H., Zhang, L., Mei, L., Quampah, A., He, Q., Zhang, B., ... & Zhu, S. (2020). qOil-3, a major QTL identification for oil content in cottonseed across genomes and its candidate gene analysis. Industrial crops and products, 145, 112070.
    Cited By
  40. Li, S., Chen, H., Hou, Z., Li, Y., Yang, C., Wang, D., & Song, C. P. (2020). Screening of abiotic stress‐responsive cotton genes using a cotton full‐length cDNA overexpressing Arabidopsis library. Journal of Integrative Plant Biology, 62(7), 998-1016.
    Cited By
  41. LIU, C., LI, Z., DOU, L., YUAN, Y., ZOU, C., SHANG, H., ... & XIAO, G. (2020). A genome-wide identification of the BLH gene family reveals BLH1 involved in cotton fiber development. Journal of Cotton Research, 3(1), 1-11.
    Cited By
  42. Peng, Z., Gao, Q., Luo, C., Gong, W., Tang, S., Zhang, X., ... & Liu, H. (2020). Flavonoid biosynthetic and starch and sucrose metabolic pathways are involved in the pigmentation of naturally brown-colored cotton fibers. Industrial Crops and Products, 158, 113045.
    Cited By
  43. Fang, S., Shang, X., Yao, Y., Li, W., & Guo, W. (2020). NST-and SND-subgroup NAC proteins coordinately act to regulate secondary cell wall formation in cotton. Plant Science, 301, 110657.
    Cited By
  44. Wang, Y., Liu, J., Zhao, G., Geng, Z., Qi, H., Dou, H., & Zhang, H. (2020). Dynamic transcriptome and co-expression network analysis of the cotton (Gossypium hirsutum) root response to salinity stress at the seedling stage. Acta Physiologiae Plantarum, 42, 1-16.
    Cited By
  45. Cai, Y., Cai, X., Wang, Q., Wang, P., Zhang, Y., Cai, C., ... & Liu, F. (2020). Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. Plant biotechnology journal, 18(3), 814-828.
    Cited By
  46. Wang, C., Guo, H., He, X., Zhang, S., Wang, J., Wang, L., ... & Guo, X. (2020). Scaffold protein GhMORG1 enhances the resistance of cotton to Fusarium oxysporum by facilitating the MKK6‐MPK4 cascade. Plant Biotechnology Journal, 18(6), 1421-1433.
    Cited By
  47. Zeng, L., Bechere, E., & Delhom, C. D. (2020). Potential for genetic improvement of neppiness traits in upland cotton. Crop Science, 60(4), 1876-1883.
    Cited By
  48. Erpelding, J. (2020). Genetic characterisation of the petal spot phenotype for Gossypium arboreum accession PI 408798. Czech Journal of Genetics and Plant Breeding, 56(2), 79-83.
    Cited By
  49. Verma, P., Venugopalan, M. V., Blaise, D., & Waghmare, V. N. (2020). Ethylene mediated regulation of fiber development in Asiatic cotton (Gossypium arboreum L.). South African Journal of Botany, 135, 349-354.
    Cited By
  50. Salih, H., He, S., Li, H., Peng, Z., & Du, X. (2020). Investigation of the EIL/EIN3 transcription factor gene family members and their expression levels in the early stage of cotton Fiber development. Plants, 9(1), 128.
    Cited By
  51. Liu, Z. H., Chen, Y., Wang, N. N., Chen, Y. H., Wei, N., Lu, R., ... & Li, X. B. (2020). A basic helix–loop–helix protein (GhFP1) promotes fibre elongation of cotton (Gossypium hirsutum) by modulating brassinosteroid biosynthesis and signalling. New Phytologist, 225(6), 2439-2452.
    Cited By
  52. Fan, K., Mao, Z., Zheng, J., Chen, Y., Li, Z., Lin, W., ... & Lin, W. (2020). Molecular evolution and expansion of the KUP family in the allopolyploid cotton species Gossypium hirsutum and Gossypium barbadense. Frontiers in Plant Science, 11, 545042.
    Cited By
  53. Zhang, J. B., Wang, X. P., Wang, Y. C., Chen, Y. H., Luo, J. W., Li, D. D., & Li, X. B. (2020). Genome-wide identification and functional characterization of cotton (Gossypium hirsutum) MAPKKK gene family in response to drought stress. BMC plant biology, 20, 1-14.
    Cited By
  54. Ahmed, H., Nazir, M. F., Pan, Z., Gong, W., Iqbal, M. S., He, S., & Du, X. (2020). Genotyping by sequencing revealed QTL hotspots for trichome-based plant defense in Gossypium hirsutum. Genes, 11(4), 368.
    Cited By
  55. QIU, T., WANG, Y., JIANG, J., ZHAO, J., WANG, Y., & QI, J. (2020). GbAt11 gene cloned from Gossypium barbadense mediates resistance to Verticillium wilt in Gossypium hirsutum. Journal of Cotton Research, 3(1), 1-10.
    Cited By
  56. Chang, Y., Li, B., Shi, Q., Geng, R., Geng, S., Liu, J., ... & Cai, Y. (2020). Comprehensive analysis of respiratory burst oxidase homologs (Rboh) gene family and function of GbRboh5/18 on Verticillium wilt resistance in Gossypium barbadense. Frontiers in genetics, 11, 788.
    Cited By
  57. He, S., Wang, P., Zhang, Y. M., Dai, P., Nazir, M. F., Jia, Y., ... & Du, X. (2020). Introgression leads to genomic divergence and responsible for important traits in upland cotton. Frontiers in Plant Science, 11, 929.
    Cited By
  58. Wang, H., Zhang, R., Shen, C., Li, X., Zhu, D., & Lin, Z. (2020). Transcriptome and QTL analyses reveal candidate genes for fiber quality in Upland cotton. The Crop Journal, 8(1), 98-106.
    Cited By
  59. YANG, D., Jing, A. N., Fangjun, L. I., Egrinya, E. A., Xiaoli, T. I. A. N., & Zhaohu, L. I. (2020). The GhREV transcription factor regulate the development of shoot apical meristem in cotton (Gossypium hirsutum). Journal of Cotton Research, 3, 1-8.
  60. Zhang, Y., Yang, N., Zhao, L., Zhu, H., & Tang, C. (2020). Transcriptome analysis reveals the defense mechanism of cotton against Verticillium dahliae in the presence of the biocontrol fungus Chaetomium globosum CEF-082. BMC plant biology, 20(1), 1-15.
    Cited By
  61. Jin, D., Wang, X., Xu, Y., Gui, H., Zhang, H., Dong, Q., ... & Song, M. (2020). Chemical defoliant promotes leaf abscission by altering ROS metabolism and photosynthetic efficiency in Gossypium hirsutum. International journal of molecular sciences, 21(8), 2738.
    Cited By
  62. Chen, L., Sun, H., Wang, F., Yue, D., Shen, X., Sun, W., ... & Yang, X. (2020). Genome-wide identification of MAPK cascade genes reveals the GhMAP3K14–GhMKK11–GhMPK31 pathway is involved in the drought response in cotton. Plant Molecular Biology, 103, 211-223.
    Cited By
  63. Mubarik, M. S., Ma, C., Majeed, S., Du, X., & Azhar, M. T. (2020). Revamping of cotton breeding programs for efficient use of genetic resources under changing climate. Agronomy, 10(8), 1190.
    Cited By
  64. Zhang, S., Jia, T., Zhang, Z., Zou, X., Fan, S., Lei, K., ... & Shang, H. (2020). Insight into the relationship between S-lignin and fiber quality based on multiple research methods. Plant Physiology and Biochemistry, 147, 251-261.
    Cited By
  65. Huang, G., Wu, Z., Percy, R. G., Bai, M., Li, Y., Frelichowski, J. E., ... & Zhu, Y. (2020). Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nature genetics, 52(5), 516-524.
    Cited By
  66. Abdelraheem, A., Elassbli, H., Zhu, Y., Kuraparthy, V., Hinze, L., Stelly, D., ... & Zhang, J. (2020). A genome-wide association study uncovers consistent quantitative trait loci for resistance to Verticillium wilt and Fusarium wilt race 4 in the US Upland cotton. Theoretical and Applied Genetics, 133, 563-577.
    Cited By
  67. Ashraf, J., Zuo, D., Cheng, H., Malik, W., Wang, Q., Zhang, Y., ... & Song, G. (2020). Improved reconstruction and comparative analysis of chromosome 12 to rectify Mis-assemblies in Gossypium arboreum. BMC genomics, 21(1), 1-14.
  68. Mushtaq, R., Shahzad, K., Shah, Z. H., Alsamadany, H., Alzahrani, H. A., Alzahrani, Y., ... & Bashir, A. (2020). Isolation of biotic stress resistance genes from cotton (Gossypium arboreum) and their analysis in model plant tobacco (Nicotiana tabacum) for resistance against cotton leaf curl disease complex. Journal of virological methods, 276, 113760.
    Cited By
  69. Kumar, R., Das, J., Raghavendra, K. P., & Nandeshwar, S. B. (2020). Identification and expression pattern analysis of two Gossypium hirsutum zinc finger transcription factors during cotton fiber initiation. National Academy Science Letters, 43, 115-119.
    Cited By
  70. Hu, G., Lei, Y., Liu, J., Hao, M., Zhang, Z., Tang, Y., ... & Wu, J. (2020). The ghr-miR164 and GhNAC100 modulate cotton plant resistance against Verticillium dahlia. Plant Science, 293, 110438.
    Cited By
  71. Wang, C., Ulloa, M., Nichols, R. L., & Roberts, P. A. (2020). Sequence composition of bacterial chromosome clones in a transgressive root-knot nematode resistance chromosome region in tetraploid cotton. Frontiers in Plant Science, 11, 574486.
    Cited By
  72. Li, Y., Liu, Z., Zhang, K., Chen, S., Liu, M., & Zhang, Q. (2020). Genome-wide analysis and comparison of the DNA-binding one zinc finger gene family in diploid and tetraploid cotton (Gossypium). Plos one, 15(6), e0235317.
    Cited By
  73. Iqbal, A., Dong, Q., Wang, X., Gui, H., Zhang, H., Zhang, X., & Song, M. (2020). Transcriptome analysis reveals differences in key genes and pathways regulating carbon and nitrogen metabolism in cotton genotypes under N starvation and resupply. International Journal of Molecular Sciences, 21(4), 1500.
    Cited By
  74. Song, Z., Chen, Y., Zhang, C., Zhang, J., Huo, X., Gao, Y., ... & Zhang, J. (2020). RNA-seq reveals hormone-regulated synthesis of non-cellulose polysaccharides associated with fiber strength in a single-chromosomal-fragment-substituted upland cotton line. The Crop Journal, 8(2), 273-286.
    Cited By
  75. Kirungu, J. N., Magwanga, R. O., Pu, L., Cai, X., Xu, Y., Hou, Y., ... & Liu, F. (2020). Knockdown of Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) Dehydrin genes, Reveals their potential role in enhancing osmotic and salt tolerance in cotton. Genomics, 112(2), 1902-1915.
    Cited By
  76. Rehman, A., Atif, R. M., Qayyum, A., Du, X., Hinze, L., & Azhar, M. T. (2020). Genome-wide identification and characterization of HSP70 gene family in four species of cotton. Genomics, 112(6), 4442-4453.
    Cited By
  77. Peng, Z., Cheng, H., Sun, G., Pan, Z., Wang, X., Geng, X., ... & Du, X. (2020). Expression patterns and functional divergence of homologous genes accompanied by polyploidization in cotton (Gossypium hirsutum L.). Science China Life Sciences, 63, 1565-1579.
    Cited By
  78. An, M., Wang, X., Chang, D., Wang, S., Hong, D., Fan, H., & Wang, K. (2020). Application of compound material alleviates saline and alkaline stress in cotton leaves through regulation of the transcriptome. BMC Plant Biology, 20(1), 1-14.
    Cited By
  79. Liu, N., Wu, S., Li, Z., Khan, A. Q., Hu, H., Zhang, X., & Tu, L. (2020). Repression of microRNA 160 results in retarded seed integument growth and smaller final seed size in cotton. The Crop Journal, 8(4), 602-612.
    Cited By
  80. Wang, L., Yin, Y., Wang, L. F., Wang, M., Zhao, M., Tian, Y., & Li, Y. F. (2020). Transcriptome profiling of the elongating internode of cotton (Gossypium hirsutum L.) seedlings in response to mepiquat chloride. Frontiers in plant science, 10, 1751.
    Cited By
  81. Patel, J. D., Huang, X., Lin, L., Das, S., Chandnani, R., Khanal, S., ... & Paterson, A. H. (2020). The Ligon lintless-2 short fiber mutation is located within a terminal deletion of chromosome 18 in cotton. Plant Physiology, 183(1), 277-288.
    Cited By
  82. Xu, Y., Magwanga, R. O., Jin, D., Cai, X., Hou, Y., Juyun, Z., ... & Zhou, Z. (2020). Comparative transcriptome analysis reveals evolutionary divergence and shared network of cold and salt stress response in diploid D-genome cotton. BMC Plant Biology, 20(1), 1-17.
    Cited By
  83. Zheng, L., Wu, H., Qanmber, G., Ali, F., Wang, L., Liu, Z., ... & Yang, Z. (2020). Genome-wide study of the GATL gene family in Gossypium hirsutum L. reveals that GhGATL genes act on pectin synthesis to regulate plant growth and fiber elongation. Genes, 11(1), 64.
    Cited By
  84. Cao, J. F., Zhao, B., Huang, C. C., Chen, Z. W., Zhao, T., Liu, H. R., ... & Chen, X. Y. (2020). The miR319-targeted GhTCP4 promotes the transition from cell elongation to wall thickening in cotton fiber. Molecular plant, 13(7), 1063-1077.
    Cited By
  85. Shen, E., Chen, T., Zhu, X., Fan, L., Sun, J., Llewellyn, D. J., ... & Zhu, Q. H. (2020). Expansion of MIR482/2118 by a class‐II transposable element in cotton. The Plant Journal, 103(6), 2084-2099.
    Cited By
  86. Lu, X., Shu, N., Wang, D., Wang, J., Chen, X., Zhang, B., ... & Ye, W. (2020). Genome-wide identification and expression analysis of PUB genes in cotton. BMC genomics, 21(1), 1-12.
    Cited By
  87. Lu, H., Cui, X., Zhao, Y., Magwanga, R. O., Li, P., Cai, X., ... & Liu, F. (2020). Identification of a genome-specific repetitive element in the Gossypium D genome. PeerJ, 8, e8344.
    Cited By
  88. Liu, Y., Wang, X., Wei, Y., Liu, Z., Lu, Q., Liu, F., ... & Peng, R. (2020). Chromosome painting based on bulked oligonucleotides in cotton. Frontiers in Plant Science, 11, 802.
    Cited By
  89. Khan, A. H., Min, L., Ma, Y., Wu, Y., Ding, Y., Li, Y., ... & Zhang, X. (2020). High day and night temperatures distinctively disrupt fatty acid and jasmonic acid metabolism, inducing male sterility in cotton. Journal of experimental botany, 71(19), 6128-6141.
    Cited By
  90. Wang, J., Du, Z., Huo, X., Zhou, J., Chen, Y., Zhang, J., ... & Zhang, J. (2020). Genome-wide analysis of PRR gene family uncovers their roles in circadian rhythmic changes and response to drought stress in Gossypium hirsutum L. PeerJ, 8, e9936.
    Cited By
  91. Ali, F., Qanmber, G., Wei, Z., Yu, D., Li, Y. H., Gan, L., ... & Wang, Z. (2020). Genome-wide characterization and expression analysis of geranylgeranyl diphosphate synthase genes in cotton (Gossypium spp.) in plant development and abiotic stresses. BMC genomics, 21, 1-15.
    Cited By
  92. MAHAJAN, C., NASER, R., & GUPTA, S. (2020). Transient expression of SbDhr2 and MeHNL in Gossypium hirsutum for herbivore deterrence assay with Spodoptera litura. Journal of Cotton Research, 3(1), 1-12.
    Cited By
  93. Fan, Y., Yu, X., Guo, H., Wei, J., Guo, H., Zhang, L., & Zeng, F. (2020). Dynamic transcriptome analysis reveals uncharacterized complex regulatory pathway underlying dose IBA-induced embryogenic redifferentiation in cotton. International journal of molecular sciences, 21(2), 426.
    Cited By
  94. Cai, S., Liu, F., & Zhou, B. (2020). Genome-Wide Identification and Expression Profile Analysis of the PHT1 Gene Family in Gossypium hirsutum and Its Two Close Relatives of Subgenome Donor Species. International Journal of Molecular Sciences, 21(14), 4905.
    Cited By
  95. Khuman, A., Arora, S., Makkar, H., Patel, A., & Chaudhary, B. (2020). Extensive intragenic divergences amongst ancient WRKY transcription factor gene family is largely associated with their functional diversity in plants. Plant Gene, 22, 100222.
    Cited By
  96. Sun, S. C., Xiong, X. P., Zhang, X. L., Feng, H. J., Zhu, Q. H., Sun, J., & Li, Y. J. (2020). Characterization of the Gh4CL gene family reveals a role of Gh4CL7 in drought tolerance. BMC plant biology, 20, 1-15.
    Cited By
  97. Zhang, G., Yue, C., Lu, T., Sun, L., & Hao, F. (2020). Genome-wide identification and expression analysis of NADPH oxidase genes in response to ABA and abiotic stresses, and in fibre formation in Gossypium. PeerJ, 8, e8404.
    Cited By
  98. Huang, J. Q., Fang, X., Tian, X., Chen, P., Lin, J. L., Guo, X. X., ... & Chen, X. Y. (2020). Aromatization of natural products by a specialized detoxification enzyme. Nature Chemical Biology, 16(3), 250-256.
    Cited By
  99. Watcharatpong, P., Kaga, A., Chen, X., & Somta, P. (2020). Narrowing down a major QTL region conferring pod fiber contents in yardlong bean (Vigna unguiculata), a vegetable cowpea. Genes, 11(4), 363.
    Cited By
  100. Nong, W., Law, S. T., Wong, A. Y., Baril, T., Swale, T., Chu, L. M., ... & Hui, J. H. (2020). Chromosomal‐level reference genome of the incense tree Aquilaria sinensis. Molecular ecology resources, 20(4), 971-979.
    Cited By
  101. Hossain, M. T., Peng, Y., Feng, S., & Wei, Y. (2020). FcircSEC: an R package for full length circRNA sequence extraction and classification. International Journal of Genomics, 2020.
    Cited By
  102. Lu, X., Cheng, Y., Gao, M., Li, M., & Xu, X. (2020). Molecular characterization, expression pattern and function analysis of glycine-rich protein genes under stresses in Chinese cabbage (Brassica rapa l. ssp. pekinensis). Frontiers in Genetics, 11, 774.
    Cited By