Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends.

Publication Overview
TitleCotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends.
AuthorsFrelichowski JE Jr; Palmer MB; Main D; Tomkins JP; Cantrell RG; Stelly DM; Yu J; Kohel RJ; Ulloa M
TypeJournal Article
Journal NameMolecular Genetics and Genomics
Volume275
Issue5
Year2006
Page(s)479 491
CitationFrelichowski JJ, Palmer M, Main D, Tomkins J, Cantrell R, Stelly D, Yu J, Kohel R, Ulloa M. Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends. Molecular genetics and genomics MGG. 2006; 275(5):479-491.
Publication CodeMGG-275-479

Abstract

Fine mapping and positional cloning will eventually improve with the anchoring of additional markers derived from genomic clones such as BACs. From 2,603 new BAC-end genomic sequences from Gossypium hirsutum Acala 'Maxxa', 1,316 PCR primer pairs (designated as MUSB) were designed to flank microsatellite or simple sequence repeat motif sequences. Most (1164 or 88\\%) MUSB primer pairs successfully amplified DNA from three species of cotton with an average of three amplicons per marker and 365 markers (21\\%) were polymorphic between G. hirsutum and G. barbadense. An interspecific RIL population developed from the above two entries was used to map 433 marker loci and 46 linkage groups with a genetic distance of 2,126.3 cM covering approximately 45\\% of the cotton genome and an average distance between two loci of 4.9 cM. Based on genome-specific chromosomes identified in G. hirsutum tetraploid (A and D), 56.9\\% of the coverage was located on the A subgenome while 39.7\\% was assigned to the D subgenome in the genetic map, suggesting that the A subgenome may be more polymorphic and recombinationally active than originally thought. The linkage groups were assigned to 23 of the 26 chromosomes. This is the first genetic map in which the linkage groups A01 and A02/D03 have been assigned to specific chromosomes. In addition the MUSB-derived markers from BAC-end sequences markers allows fine genetic and QTL mapping of important traits and for the first time provides reconciliation of the genetic and physical maps. Limited QTL analyses suggested that loci on chromosomes 2, 3, 12, 15 and 18 may affect variation in fiber quality traits. The original BAC clones containing the newly mapped MUSB that tag the QTLs provide critical DNA regions for the discovery of gene sequences involved in biological processes such as fiber development and pest resistance in cotton.
Features
This publication contains information about 1,316 features:
Feature NameUniquenameType
MUSB0001MUSB0001genetic_marker
MUSB0002MUSB0002genetic_marker
MUSB0003MUSB0003genetic_marker
MUSB0004MUSB0004genetic_marker
MUSB0005MUSB0005genetic_marker
MUSB0006MUSB0006genetic_marker
MUSB0007MUSB0007genetic_marker
MUSB0008MUSB0008genetic_marker
MUSB0009MUSB0009genetic_marker
MUSB0010MUSB0010genetic_marker
MUSB0011MUSB0011genetic_marker
MUSB0012MUSB0012genetic_marker
MUSB0013MUSB0013genetic_marker
MUSB0014MUSB0014genetic_marker
MUSB0015MUSB0015genetic_marker
MUSB0016MUSB0016genetic_marker
MUSB0017MUSB0017genetic_marker
MUSB0018MUSB0018genetic_marker
MUSB0019MUSB0019genetic_marker
MUSB0020MUSB0020genetic_marker
MUSB0021MUSB0021genetic_marker
MUSB0022MUSB0022genetic_marker
MUSB0023MUSB0023genetic_marker
MUSB0024MUSB0024genetic_marker
MUSB0025MUSB0025genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
TM-1 x 3-79, RIL (2006)
Properties
Additional details for this publication include:
Property NameValue
eISSN1617-4623
Journal AliasMGG Molecular Genetics and Genomics; Molecular Genetics and Genomics : MGG; Molecular Genetics & Genomics : MGG
Journal CodeMGG
LanguageEnglish
pISSN1617-4615
Publication CodeMGG-275-479
Published LocationGermany
Published Location479 491
Language Abbreng
URLhttp://dx.doi.org/10.1007/s00438-006-0106-z
Publication TypeJournal Article
Publication Model[electronic resource].
Publication Date2006
KeywordsSimple sequence repeat (SSR); Bacterial artificial chromosome (BAC); BAC-end sequencing; Genetic mapping; Quantitative trait loci (QTL); Fine mapping; Molecular tagging; Gossypium hirsutum; *Chromosomes, Artificial, Bacterial; Genetic Markers; *Genome, Plant; Gossypium/*genetics; *Microsatellite Repeats; *Physical Chromosome Mapping; gossypium-hirsutum l.; est-derived microsatellites; simple sequence repeats; genetic-linkage maps; chromosomal assignment; allotetraploid cotton; polyploid formation; resistance genes; cell elongation; fiber quality, quantitative trait loci, linkage (genetics), microsatellite repeats, plant genetics, chromosome mapping, cotton