Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends.

Publication Overview
TitleCotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends.
AuthorsFrelichowski JE Jr; Palmer MB; Main D; Tomkins JP; Cantrell RG; Stelly DM; Yu J; Kohel RJ; Ulloa M
TypeJournal Article
Journal NameMolecular Genetics and Genomics
Volume275
Issue5
Year2006
Page(s)479 491
CitationFrelichowski JJ, Palmer M, Main D, Tomkins J, Cantrell R, Stelly D, Yu J, Kohel R, Ulloa M. Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends. Molecular genetics and genomics MGG. 2006; 275(5):479-491.
Publication CodeMGG-275-479

Abstract

Fine mapping and positional cloning will eventually improve with the anchoring of additional markers derived from genomic clones such as BACs. From 2,603 new BAC-end genomic sequences from Gossypium hirsutum Acala 'Maxxa', 1,316 PCR primer pairs (designated as MUSB) were designed to flank microsatellite or simple sequence repeat motif sequences. Most (1164 or 88\\%) MUSB primer pairs successfully amplified DNA from three species of cotton with an average of three amplicons per marker and 365 markers (21\\%) were polymorphic between G. hirsutum and G. barbadense. An interspecific RIL population developed from the above two entries was used to map 433 marker loci and 46 linkage groups with a genetic distance of 2,126.3 cM covering approximately 45\\% of the cotton genome and an average distance between two loci of 4.9 cM. Based on genome-specific chromosomes identified in G. hirsutum tetraploid (A and D), 56.9\\% of the coverage was located on the A subgenome while 39.7\\% was assigned to the D subgenome in the genetic map, suggesting that the A subgenome may be more polymorphic and recombinationally active than originally thought. The linkage groups were assigned to 23 of the 26 chromosomes. This is the first genetic map in which the linkage groups A01 and A02/D03 have been assigned to specific chromosomes. In addition the MUSB-derived markers from BAC-end sequences markers allows fine genetic and QTL mapping of important traits and for the first time provides reconciliation of the genetic and physical maps. Limited QTL analyses suggested that loci on chromosomes 2, 3, 12, 15 and 18 may affect variation in fiber quality traits. The original BAC clones containing the newly mapped MUSB that tag the QTLs provide critical DNA regions for the discovery of gene sequences involved in biological processes such as fiber development and pest resistance in cotton.
Features
This publication contains information about 1,316 features:
Feature NameUniquenameType
MUSB0276MUSB0276genetic_marker
MUSB0277MUSB0277genetic_marker
MUSB0278MUSB0278genetic_marker
MUSB0279MUSB0279genetic_marker
MUSB0280MUSB0280genetic_marker
MUSB0281MUSB0281genetic_marker
MUSB0282MUSB0282genetic_marker
MUSB0283MUSB0283genetic_marker
MUSB0284MUSB0284genetic_marker
MUSB0285MUSB0285genetic_marker
MUSB0286MUSB0286genetic_marker
MUSB0287MUSB0287genetic_marker
MUSB0288MUSB0288genetic_marker
MUSB0289MUSB0289genetic_marker
MUSB0290MUSB0290genetic_marker
MUSB0291MUSB0291genetic_marker
MUSB0292MUSB0292genetic_marker
MUSB0293MUSB0293genetic_marker
MUSB0294MUSB0294genetic_marker
MUSB0295MUSB0295genetic_marker
MUSB0296MUSB0296genetic_marker
MUSB0297MUSB0297genetic_marker
MUSB0298MUSB0298genetic_marker
MUSB0299MUSB0299genetic_marker
MUSB0300MUSB0300genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
TM-1 x 3-79, RIL (2006)
Properties
Additional details for this publication include:
Property NameValue
eISSN1617-4623
Journal AliasMGG Molecular Genetics and Genomics; Molecular Genetics and Genomics : MGG; Molecular Genetics & Genomics : MGG
Journal CodeMGG
LanguageEnglish
pISSN1617-4615
Publication CodeMGG-275-479
Published LocationGermany
Published Location479 491
Language Abbreng
URLhttp://dx.doi.org/10.1007/s00438-006-0106-z
Publication TypeJournal Article
Publication Model[electronic resource].
Publication Date2006
KeywordsSimple sequence repeat (SSR); Bacterial artificial chromosome (BAC); BAC-end sequencing; Genetic mapping; Quantitative trait loci (QTL); Fine mapping; Molecular tagging; Gossypium hirsutum; *Chromosomes, Artificial, Bacterial; Genetic Markers; *Genome, Plant; Gossypium/*genetics; *Microsatellite Repeats; *Physical Chromosome Mapping; gossypium-hirsutum l.; est-derived microsatellites; simple sequence repeats; genetic-linkage maps; chromosomal assignment; allotetraploid cotton; polyploid formation; resistance genes; cell elongation; fiber quality, quantitative trait loci, linkage (genetics), microsatellite repeats, plant genetics, chromosome mapping, cotton