A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium).

Publication Overview
TitleA 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium).
AuthorsRong J; Abbey C; Bowers JE; Brubaker CL; Chang C; Chee PW; Delmonte TA; Ding X; Garza JJ; Marler BS; Park CH; Pierce GJ; Rainey KM; Rastogi VK; Schulze SR; Trolinder NL; Wendel JF; Wilkins TA; Williams-Coplin TD; Wing RA; Wright RJ; Zhao X; Zhu L; Paterson AH
TypeJournal Article
Journal NameGenetics
Volume166
Issue1
Year2004
Page(s)389 417
CitationRong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding X, Garza JJ, Marler BS, Park CH, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics. 2004 Jan; 166(1):389-417.
Publication CodeGEN-166-389

Abstract

We report genetic maps for diploid (D) and tetraploid (AtDt) Gossypium genomes composed of sequence-tagged sites (STS) that foster structural, functional, and evolutionary genomic studies. The maps include, respectively, 2584 loci at 1.72-cM (apprx600 kb) intervals based on 2007 probes (AtDt) and 763 loci at 1.96-cM (apprx500 kb) intervals detected by 662 probes (D). Both diploid and tetraploid cottons exhibit negative crossover interference\\; i.e., double recombinants are unexpectedly abundant. We found no major structural changes between Dt and D chromosomes, but confirmed two reciprocal translocations between At chromosomes and several inversions. Concentrations of probes in corresponding regions of the various genomes may represent centromeres, while genome-specific concentrations may represent heterochromatin. Locus duplication patterns reveal all 13 expected homeologous chromosome sets and lend new support to the possibility that a more ancient polyploidization event may have predated the A-D divergence of 6-11 million years ago. Identification of SSRs within 312 RFLP sequences plus direct mapping of 124 SSRs and exploration for CAPS and SNPs illustrate the "portability" of these STS loci across populations and detection systems useful for marker-assisted improvement of the world's leading fiber crop. These data provide new insights into polyploid evolution and represent a foundation for assembly of a finished sequence of the cotton genome.
Features
This publication contains information about 3,361 features:
Feature NameUniquenameType
pAR07C01pAR07C01genetic_marker
pAR07C02pAR07C02genetic_marker
pAR07C03pAR07C03genetic_marker
pAR07C04pAR07C04genetic_marker
pAR07C05pAR07C05genetic_marker
pAR07C06pAR07C06genetic_marker
pAR07C07pAR07C07genetic_marker
pAR07C08pAR07C08genetic_marker
pAR07C09pAR07C09genetic_marker
pAR07C10pAR07C10genetic_marker
pAR07C11pAR07C11genetic_marker
pAR07C12pAR07C12genetic_marker
pAR07D01pAR07D01genetic_marker
pAR07D02pAR07D02genetic_marker
pAR07D04pAR07D04genetic_marker
pAR07D05pAR07D05genetic_marker
pAR07D06pAR07D06genetic_marker
pAR07D07pAR07D07genetic_marker
pAR07D08pAR07D08genetic_marker
pAR07D09pAR07D09genetic_marker
pAR07D10pAR07D10genetic_marker
pAR07D11pAR07D11genetic_marker
pAR07D12pAR07D12genetic_marker
pAR07E01pAR07E01genetic_marker
pAR07E03pAR07E03genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
Palmeri x K-101, F2 (2007)
Properties
Additional details for this publication include:
Property NameValue
ISSN0016-6731
Journal AbbreviationGenetics
Journal CountryUnited States
Language Abbreng
Publication Date2004 Jan
Publication ModelPrint
Publication TypeJournal Article
Publication TypeResearch Support, Non-U.S. Gov't
Publication TypeResearch Support, U.S. Gov't, Non-P.H.S.
Journal CodeGEN
LanguageEnglish
pISSN0016-6731
Publication CodeGEN-166-389
Published LocationUnited States
URLhttps://www.ncbi.nlm.nih.gov/pubmed/15020432
KeywordsEST; GSS; Chromosome Mapping; polyploid formation