Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation

Publication Overview
TitleMetabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation
AuthorsTuttle JR, Nah G, Duke MV, Alexander DC, Guan X, Song Q, Chen ZJ, Scheffler BE, Haigler CH
TypeJournal Article
Journal NameBMC genomics
Volume16
Year2015
Page(s)477
CitationTuttle JR, Nah G, Duke MV, Alexander DC, Guan X, Song Q, Chen ZJ, Scheffler BE, Haigler CH. Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC genomics. 2015; 16:477.

Abstract

BACKGROUND
The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber.

RESULTS
Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA.

CONCLUSIONS
The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length.

Features
This publication contains information about 2,096 features:
Feature NameUniquenameType
GBYK01000276GBYK01000276.1region
GBYK01000277GBYK01000277.1region
GBYK01000278GBYK01000278.1region
GBYK01000279GBYK01000279.1region
GBYK01000280GBYK01000280.1region
GBYK01000281GBYK01000281.1region
GBYK01000282GBYK01000282.1region
GBYK01000283GBYK01000283.1region
GBYK01000284GBYK01000284.1region
GBYK01000285GBYK01000285.1region
GBYK01000286GBYK01000286.1region
GBYK01000287GBYK01000287.1region
GBYK01000288GBYK01000288.1region
GBYK01000289GBYK01000289.1region
GBYK01000290GBYK01000290.1region
GBYK01000291GBYK01000291.1region
GBYK01000292GBYK01000292.1region
GBYK01000293GBYK01000293.1region
GBYK01000294GBYK01000294.1region
GBYK01000295GBYK01000295.1region
GBYK01000296GBYK01000296.1region
GBYK01000297GBYK01000297.1region
GBYK01000298GBYK01000298.1region
GBYK01000299GBYK01000299.1region
GBYK01000300GBYK01000300.1region

Pages

Properties
Additional details for this publication include:
Property NameValue
URLhttp://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-1708-9
DOI10.1186/s12864-015-1708-9
eISSN1471-2164
Elocation10.1186/s12864-015-1708-9
ISSN1471-2164
Journal AbbreviationBMC Genomics
Journal CountryEngland
LanguageEnglish
Language Abbreng
Publication Date2015
Publication ModelElectronic
Publication TypeJournal Article