QTL Analysis of Fiber Yield and Quality and Resistance to
Verticillium Wilt Using Gossypium hirsutum and G. barbadense
Advanced Backcross Populations

LI AI guo1, LIU Guang ping1, ZITANG Bao cai1, LI Jun wen1, SIII Yu zhen1,
LIU AI ying1, YANG Ze mao2, LIU Zhil1, YU Xiao nu2, WANG Tao1, YUAN You lu1

1. Cotton Research Institute, Chinese Academy of Agricultural Sciences; Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, Henan 455000, China; 2. College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; 3. College of Life Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China

To introgress elite QTL alleles of Gossypium barbadense L. for fiber yield and quality and resistance to Verticillium wilt into G. hirsutum L., enlarge the genetic base of G. hirsutum, and provide new germplasm resources for the variety development, the cultivars Zhongmianuo 36, G. hirsutum, and Hai 1, G. barbadense, were used as recurrent and donor parents, respectively, to produce BC1F1, BC2S1, and BC2F1 populations. QTL analyses of fiber quality, yield-related, and Verticillium wilt traits were conducted by the Composite Interval Mapping (CIM) method. Most traits fit the normal distribution in the Kolmogorov-Smirnov test. Fiber length had a significantly positive correlation with fiber strength and a negative correlation with micronaire value; seed index had a significantly positive correlation with boll weight and a negative correlation with lint percentage; lint percentage had negative correlations with fiber length and strength. These correlations could be genetically explained by QTLs co-location in this experiment. A total of 6200 SSR primer pairs were used to screen polymorphism among two parents and the F1 progeny, which resulted in 857 polymorphic primer pairs with the unique band for Hai 1 and 776 of them were used to screen the BC1F1 population. Linkage test in diapeded 789 of 800 polymorphic loci could be mapped into 28 linkage groups, covering 2968.66 cM, approximately 68.7% of the 4450 cM cotton genome. Each linkage group averaged 27.46 markers, spanned 106.02 cM, with 3.86 cM between markers. Eighty-three QTLs for fiber quality traits were mapped among the three generations. There were 20, 12, 12, 21, and 18 QTLs for fiber length, strength, micronaire, uniformity, and elongation ratio, respectively, which explained 5.39% ~ 23.29% of phenotypic variance. One QTL for fiber elongation, and one for fiber length were detected in the three generations. Additionally, four for fiber elongation, two for fiber length, one for micronaire, and three for fiber strength could be detected in two of the three generations or of the normal field and the disease nursery field. Twenty seven QTLs for yield related traits were mapped among the three generations. QTL numbers for lint percentage, boll weight, and seed index were 7, 7, and 13, respectively, which accounted for 6.61% ~ 19.03% of phenotypic variance. Two QTLs for lint percentage could be detected in the three generations. Additionally, two for lint percentage and two for seed index could be detected in the two of the three generations, which indicated that these QTLs had stable genetic effects, and could be used for marker assisted selection. Thirty QTLs for Verticillium wilt resistance were mapped in BC1F1 and BC1S1 generations, and each could explain 6.54% ~ 16.96% of phenotypic variance. Three QTLs for resistance to Verticillium wilt were detected in the wilt nursery and the normal field or in the BC1F1 and BC1S1 generations, which showed the stable genetic effects. These resistance alleles were derived from the G. barbadense parent and could be used for marker assisted breeding.

Key words: interspecific backcrosses; AB QTL; fiber quality; yield; Verticillium wilt resistance