IFAS Extension
West Florida Research
and Education Center

## UNIVERSITY of FLORIDA

2013 COTTON VARIETY DEMO, JAY, FLORIDA<br>Darcy E. P. Telenko and Michael Donahoe

This report includes a summary of the 2013 cotton variety demo in Jay, Florida. It shows the performance of twenty cotton varieties. This data represents only one year and is not replicated, results should be considered over several locations and years before conclusions are valid.
Varieties that were evaluated (Maturity E=early, M=mid, F=full):

1. PHY 339 WRF -E
2. DP 1321 B2RF -E-M
3. FM 1944 GLB2 -E
4. DPLX 12R224 B2R2 -E-M
5. PHY 375 WRF -E
6. ST 4946 GLB2 -E-M
7. NG 1511 B2RF -M
8. DPLX 12R242 B2R2 -M-F
9. CROPLAN 3787 B2RF -M-F
10. DP 1034 B2RF -M
11. DP 1137 B2RF -M
12. PHY 499 WRF -M
13. PHY 565 WRF -M-F
14. DP 1048 B2RF -M-F
15. DP 1050 B2RF -F
16. DP 1252 B2RF -F
17. PHY 575 WRF -F
18. ST 6448 GLB2 -F
19. DP 1359 B2RF -F
20. NG 5315 B2RF -F

## 2013 Growing Conditions and Experimental Design

The soil type was a Red Bay sandy loam that has a history of cotton production. The field was planted in a rotation of peanut 2012 and 2011 and sod 2008-2010. Each cotton variety was plated on 9 May under conventional tillage. Plots were eight, 800-ft rows with 36-in. row spacing. Standard practices for non-irrigated cotton production were followed throughout the season. Stealth 1 qt/A was applied on 8 May for pre-plant weed control, and Roundup 22 oz/A was applied 20 Jun and 31 Jul for post-emergence weed control. Bidrin $83.2 \mathrm{oz} / \mathrm{A}$ was applied on 31 May and Tombstone 3.2 oz/A on 7 Aug were applied for insect control. Headline $9 \mathrm{oz} / \mathrm{A}$ was applied on 17 Jul for disease control. Miller's hot sauce $4 \mathrm{oz} / \mathrm{a}$ applied on 30 May and 20 Jun to deter deer grazing. Growth regulator Potenza was applied $10 \mathrm{oz} / \mathrm{A}$ on $2 \mathrm{Jul}, 12 \mathrm{oz} / \mathrm{A}$ on 17 Jul and 31 Jul, and 16 oz/A on 7 Aug. Takedown $2.0 \mathrm{oz} / \mathrm{A}$, Display $0.5 \mathrm{oz} / \mathrm{a}$ were applied on 14 Oct. Cotton was picked on 4 Nov and samples were sent for fiber analysis.

Rainfall in May, June and Oct was 7.1, 0.74, 4.21 in. below normal, respectively; rainfall in Jul, Aug, and Sep was 5.23, 1.37, and 3.65 in. above normal, respectively. Rainfall during the period totaled 33.23 in., which was 1.61 in. below normal. Weather data was obtained from Florida Automated Weather Network (FAWN) station located on Jay research farm and normal represents the mean for the past 54 years of records (Table 1).

Table 1. Weather conditions during 2013 in Jay, FL.

|  | Total rainfall (in.) | Average minimum <br> air temperature <br> $\left({ }^{\circ} \mathrm{F}\right)$ | Average <br> maximum air <br> temperature $\left({ }^{\circ} \mathrm{F}\right)$ |
| :---: | :---: | :---: | :---: |
| Month | $0.7(7.1$ below normal $)$ | 43.0 | 91.8 |
| May | $5.8(0.7$ below normal $)$ | 65.5 | 93.8 |
| June | $11.8(5.2$ above normal $)$ | 67.6 | 92.9 |
| July | $5.5(1.4$ above normal) | 67.5 | 95.2 |
| August | $8.0(3.7$ above normal $)$ | 58.6 | 93.7 |
| September | $3.7(4.2$ below normal $)$ | 38.0 | 88.1 |
|  |  |  |  |

## Summary

Stand counts ranged from 1.68 plants/ft (24,382 plants/A) to 2.27 plants/ft (32,912 plants/A) (Table 2). On 28 May thrips damaged detected in Delta Pine varieties. Total yields (lint+seed) ranged from DP 1359 B2RF $2416 \mathrm{lb} /$ A to DPLX 12R224 B2R2 $3924 \mathrm{lb} / \mathrm{A}$. Gin turn out (GTO) ranged from $33 \%$ to $36 \%$ lint, with resulting yields of 817 lb lint/A to 1423 lb lint/A ( 1.70 to 2.96 bales/A). DPLX 12R224 B2R2 was the highest yielding early- mid variety and DP 1050 B2RF was the highest late maturing variety.

Table 2. Effect of variety on emergence and yield in cotton.

| Yield <br> rank | Variety | $\begin{gathered} \text { Plants/ } \\ \mathrm{ft}^{\mathrm{v}} \\ (28 \mathrm{May}) \end{gathered}$ | Plant population/A (28 May) | Yield |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | lb/A ${ }^{\text {w }}$ | GTO ${ }^{\text {x }}$ | Lint/A ${ }^{\text {y }}$ | Bales/A ${ }^{\text {z }}$ |
| 1 | DPLX 12R224 B2R2 ......... | 2.13 | 30,976 | 3934 | 36.2 | 1423 | 2.96 |
| 2 | PHY 339 WRF | 2.09 | 30,311 | 3476 | 35.6 | 1237 | 2.58 |
| 3 | PHY 375 WRF | 1.81 | 26,318 | 3399 | 35.3 | 1199 | 2.50 |
| 4 | CROPLAN 3787 B2RF ..... | 1.95 | 28,314 | 3177 | 37.7 | 1198 | 2.50 |
| 5 | DP 1048 B2RF | 1.90 | 27,588 | 3404 | 34.5 | 1174 | 2.44 |
| 6 | DP 1050 B2RF ................. | 1.70 | 24,684 | 3272 | 35.7 | 1169 | 2.44 |
| 7 | DP 1034 B2RF | 1.98 | 28,738 | 3286 | 35.3 | 1160 | 2.42 |
| 8 | DP 1252 B2RF | 2.00 | 29,101 | 3172 | 36.4 | 1155 | 2.41 |
| 9 | DP 1137 B2RF | 1.88 | 27,225 | 3251 | 34.9 | 1136 | 2.37 |
| 10 | ST 6448 GLB2 | 1.96 | 28,435 | 3313 | 34.1 | 1129 | 2.35 |
| 11 | PHY 575 WRF | 2.27 | 32,912 | 3301 | 32.9 | 1087 | 2.26 |
| 12 | NG 5315 B2RF | 1.90 | 27,588 | 3074 | 34.9 | 1074 | 2.24 |
| 13 | DP 1321 B2RF | 2.09 | 30,311 | 3052 | 34.1 | 1040 | 2.17 |
| 14 | DPLX 12R242 B2R2 ......... | 2.25 | 32,731 | 3050 | 33.2 | 1011 | 2.11 |
| 15 | PHY 565 WRF | 1.81 | 26,318 | 2836 | 35.3 | 1000 | 2.08 |
| 16 | PHY 499 WRF ................. | 2.01 | 29,222 | 2662 | 37.5 | 999 | 2.08 |
| 17 | FM 1944 GLB2................. | 1.68 | 24,382 | 2916 | 33.5 | 977 | 2.04 |
| 18 | NG 1511 B2RF | 1.95 | 28,314 | 2759 | 34.9 | 963 | 2.01 |
| 19 | ST 4946 GLB2 ................ | 1.99 | 28,919 | 2684 | 33.0 | 886 | 1.85 |
| 20 | DP 1359 B2RF ................. | 2.24 | 32,549 | 2416 | 33.8 | 817 | 1.70 |
|  | Mean.......................... | 1.98 | 28,747 | 3122 | 34.9 | 1092 | 2.28 |

[^0]Fiber quality was classed at the USDA Classing Office in Memphis, TN. Micronaire (Mic), a measure of fiber fitness and maturity, ranged from 4.4 (PHY 575 WRF) to 5.4 (NG 1511 B2RF) for the varieties evaluated (Table 3). Fiber length averaged 1.5 inches and strength $30.1 \mathrm{~g} /$ tex. Uniformity, the ratio between mean length and upper-half mean length of fibers, ranged from 80.2 to $84.0 \%$ with an average of $82.2 \%$. HVI color grades included 31-1, 31-3, 31-$4,32-2,41-1,41-3,41-4$, and 42-1 while leaf grades averaged 4.0. Net loan price which was calculated based on $\$ 0.52 / \mathrm{lb}+/-$ premiums and discounts and ranged from 47.30 ¢/lb (ST 4946 GLB2) to 56.50 ¢/lb (CG 3787 B2RF and ST 6448 GLB2). Overall lint value per acre ranged from $\$ 419$ to $\$ 736$, with an average of $\$ 586 / \mathrm{A}$.

Table 3. Effect of variety on lint yield and fiber quality.

| Variety | Gin turnout (\%) | Lint yield ${ }^{\text {t }}$ <br> (lb/A <br> ) | Mic ${ }^{\text {u }}$ | Fiber length ${ }^{\text {V }}$ (in.) | Fiber strength (g/tex) | Uniformity ${ }^{\mathrm{x}}$ (\%) | $\begin{aligned} & \text { HVI } \\ & \text { color }^{\text {y }} \end{aligned}$ | Leaf grade ${ }^{\text {z }}$ | Net loan price (¢/lb) | Lint value (\$/A) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DPLX 12R224 B2R2 | 36.2 | 1423 | 4.5 | 1.19 | 31.9 | 84 | 41-1 | 5 | 51.75 | 736 |
| CG 3787 B2RF | 37.7 | 1198 | 4.8 | 1.16 | 29.2 | 83 | 31-4 | 3 | 56.5 | 677 |
| PHY 339 WRF | 35.6 | 1237 | 4.6 | 1.16 | 30 | 81.9 | 41-1 | 4 | 53.6 | 663 |
| DP 1048 B2RF | 34.5 | 1174 | 4.7 | 1.14 | 28.6 | 82.3 | 31-1 | 3 | 56.3 | 661 |
| DP 1252 B2RF | 36.4 | 1155 | 4.8 | 1.17 | 29.8 | 83.7 | 31-4 | 3 | 56.5 | 653 |
| ST 6448 GLB2 | 34.1 | 1129 | 4.7 | 1.15 | 30.1 | 80.2 | 31-3 | 3 | 56.5 | 638 |
| DP 1034 B2RF | 35.3 | 1160 | 5 | 1.15 | 29.4 | 83 | 31-3 | 2 | 54.75 | 635 |
| PHY 375 WRF | 35.3 | 1199 | 4.7 | 1.07 | 29.1 | 80.7 | 41-1 | 3 | 52.6 | 631 |
| DP 1137 B2RF | 34.9 | 1136 | 4.7 | 1.14 | 29.2 | 83.6 | 41-3 | 3 | 54.25 | 616 |
| DP 1050 B2RF | 35.7 | 1169 | 4.7 | 1.09 | 29 | 79.4 | 42-1 | 3 | 50.65 | 592 |
| PHY 575 WRF | 32.9 | 1087 | 4.4 | 1.2 | 29.8 | 81.6 | 41-1 | 3 | 54.05 | 588 |
| NG 5315 B2RF | 34.9 | 1074 | 4.7 | 1.17 | 30.2 | 83.4 | 41-3 | 4 | 53.8 | 578 |
| PHY 565 WRF | 35.3 | 1000 | 4.7 | 1.17 | 32.3 | 83.1 | 41-3 | 4 | 53.9 | 539 |
| FM 1944 GLB2 | 33.5 | 977 | 4.9 | 1.2 | 32.7 | 82.2 | 41-1 | 4 | 53.8 | 526 |
| DPLX 12R242 B2R2 | 33.2 | 1011 | 5.1 | 1.11 | 27.8 | 81.4 | 41-3 | 3 | 51.6 | 522 |
| DP 1321 B2RF | 34.1 | 1040 | 5.2 | 1.13 | 30 | 81.8 | 32-2 | 4 | 50.1 | 521 |
| PHY 499 WRF | 37.5 | 999 | 5 | 1.13 | 31.2 | 83.6 | 41-4 | 5 | 49.35 | 493 |
| NG 1511 B2RF | 34.9 | 963 | 5.4 | 1.13 | 29.6 | 82.9 | 41-4 | 5 | 47.85 | 461 |
| DP 1359 B2RF | 33.8 | 817 | 4.7 | 1.14 | 31.1 | 80.3 | 32-2 | 3 | 53.25 | 435 |
| ST 4946 GLB2 | 33 | 886 | 5 | 1.12 | 31.4 | 82 | 42-1 | 5 | 47.3 | 419 |
| Mean...................... | 34.9 | 1092 | 4.8 | 1.15 | 30.1 | 82.2 |  | 4 | 53.70 | 586 |
| Determined from counts of eight, 30 - ft sections per plot. <br> ${ }^{5}$ Gin turnout= weight of lint as a percent of seed cotton weight, which is composed of lint, seed, trash, and excess moisture. <br> ${ }^{\mathrm{t}}$ Weight of lint (lb/A). <br> ${ }^{\mathrm{u}}$ Mic (micronaire): A measure of fiber fineness or maturity. An airflow instrument measures the air permeability of a given mass of cotton lint compressed to a fixed volume. Low "mike" values indicate finer or less mature fibers. |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\mathrm{v}}$ Fiber length= average fiber length of the longer one-half of the fibers sampled, in hundredths of an inch. |  |  |  |  |  |  |  |  |  |  |
| ${ }^{w}$ Fiber strength = force required to break a bundle of fibers one tex unit in size. A tex is the weight in grams of 1,000 meters of fiber. HVI clamp jaw spacing is $1 / 8$ inch. |  |  |  |  |  |  |  |  |  |  |
| ${ }^{x}$ Uniformity $=$ length uniformity is the ratio between the mean length and the upper-half mean length of the fibers, expressed as a percentage. |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\mathrm{y}}$ HVI Color = color grade is a function of white reflectance (Rd) and yellowness (+b) of the lint sample. The HVI color code identifies the quadrant of the Nickerson-Hunter cotton colorimeter diagram in which Rd and +b values intersect (USDA, 1999). |  |  |  |  |  |  |  |  |  |  |
| ${ }^{\mathrm{z}}$ Leaf Grade = visual estimate of the amount of cotton plant leaf particles in a sample of lint. There are seven leaf grades represented by physical standards, plus a below grade designation. |  |  |  |  |  |  |  |  |  |  |
| Entries are listed according to value in $\$ /$ Acre based on $\$ 0.52 / l b+/$ - premium/discounts. Samples ginned at the University of Tennessee's West TN Research and Education Center and classed at the USDA Classing Office in Memphis, TN. |  |  |  |  |  |  |  |  |  |  |

## REFERENCES CITED

USDA. 1999. The Classification of Cotton. Agricultural Marketing Service, Agric. Handbook 566. Rev.1/99. Washington, DC. 23 pp.


[^0]:    ${ }^{\mathrm{v}}$ Determined from counts of eight, 30 -ft sections per plot.
    ${ }^{\mathrm{w}}$ Weight (lb/A) includes lint + seed.
    ${ }^{\mathrm{x}}$ GTO = gin turn out \% lint/seed cotton.
    ${ }^{\mathrm{y}}$ Weight of lint (lb/A).
    ${ }^{\mathrm{z}}$ Bales/A are weight of lint only at $480 \mathrm{lb} / \mathrm{bale}$. Plots were harvested on 4 Nov.

