2010

Cotton Varieties for Louisiana

Table of Contents

Introduction	
Choosing varieties	.3
Fiber properties	.4
Using the data	.4
Selecting varieties	.4
Transgenic traits	.5
Seeding rate and stand	.6
Average Performance Across all Louisiana Locations	
Early maturing, Tables 1 and 2	,7
Medium maturing, Tables 3 and 4	.9
Alexandria Silt Loam (Dean Lee Research Station)	
Early Maturing, Table A1 I	I
Medium Maturing, Table A2 I	2
Alexandria Clay (Dean Lee Research Station)	
Early maturing, Table A3 I	3
Medium maturing, Table A4 I	4
Winnsboro Irrigated (Macon Ridge Research Station)	
Early maturing, Table W1 I	5
Medium maturing, Table W2 I	6
Winnsboro Non-Irrigated (Macon Ridge Research Station)	
Early maturing, Table W3 I	7
Medium maturing, Table W4 I	8
St. Joseph Silt Loam (Northeast Research Station)	
Early maturing, Table SJI I	9
Medium maturing, Table SJ22	20
St Joseph Clay (Northeast Research Station)	
Early maturing, Table SJ3 2	!
Medium maturing, Table SJ4 2	2
Note: The St. Joseph test results are for 2007 and 2009. The 2008 trials were not included because of excessive storm damage.	

Introduction

Each year, scientists at the LSU AgCenter evaluate cotton varieties at four locations that are representative of Louisiana's cotton production regions. The official variety tests (OVTs) are located at the Red River Research Station near Bossier City, the Dean Lee Research Station near Alexandria, the Macon Ridge Research Station near Winnsboro, and the Northeast Research Station near St. Joseph. Varieties are managed using practices that follow AgCenter recommendations and typify commercial operations as closely as possible. All entries within a trial are replicated four or five times and data are compiled for average performance after one and two-years of testing.

Choosing Varieties

Variety selection is one of the most important decisions a cotton farmer will make for the entire growing season. The variety, and associated traits in that variety, set the stage for harvest at the time of planting. All other input decisions become supplemental after the variety is selected. Variety selection has become increasingly important since the introduction of transgenic cottons and concurrent increases in seed costs and technology fees. Moreover, variety selection is the one decision a producer makes that is not influenced by weather or other environmental factors. Therefore, choosing a high yielding variety with acceptable fiber quality that is adapted to local growing conditions should be given careful consideration because of the tremendous importance of this decision for the entire season.

Choosing a cotton variety can be difficult and the availability of many different transgenic traits complicates the process. The more informed the decision the better; therefore, this publication strives to provide as much information as possible to growers concerning cotton variety performance over a wide range of soil types and conditions. The information reported concerning measured performance of cotton varieties in Louisiana should be extremely useful as a primary source of information for choosing varieties.

Producers should be mindful that OVTs can never identify the best single variety for all soils and conditions. Producers should always plant multiple varieties selected from the top performers in the OVTs that are closest to their production region. This decision is one of the best to spread crop management activities and mitigate risk from adverse environmental conditions. There are always differences in performance of individual varieties from one year to the next. However, in most years those among the top 10% of the highest yielding varieties generally remain there for several seasons. So the best variety for a particular farm very likely resides among the top yielders in the OVT, but no one can be certain exactly which of those top yielding varieties will be the highest yielder for the upcoming year. This is actually a good thing because it gives producers the option to select from as many as 5 to 10 varieties with different traits, knowing that any one of those may be the best for next year's crop. The majority of a grower's acreage should be devoted to proven varieties. Newer varieties should be tried on limited acreage until further testing is completed.

Fiber Properties

Fiber quality has become a more important consideration in marketing cotton and choosing varieties. As the domestic textile industry has become very limited, most US cotton is being exported to foreign mills who generally demand cotton with the most consistent and highest quality fiber properties. The quality of Louisiana cotton has been a concern in recent years, particularly with regard to high micronaire. While premiums are small, discounts for high micronaire and other factors can be significant. Variety selection plays the largest role in fiber properties and is increasingly important for US cotton to maintain and increase share in the world market.

Fiber parameters in the OVTs were determined using the same High Volume Instrumentation (HVI) classing system utilized in a USDA classing office. Physical properties including staple length (reported as the upper half mean length or UHM), fiber strength, uniformity index, and micronaire were evaluated and are reported for each variety. Other fiber properties such as leaf, trash and color grades can be influenced by defoliation, ginning and seed cotton storage in modules. OVTs may not be representative of commercial operations for these fiber properties and therefore are not reported in this publication.

Using the Data

Yield should be the primary factor considered when selecting a variety, followed by fiber quality and maturity. Top yielding varieties should be considered first. There is often no statistical difference between the top yielding varieties in a given trial. The least significant difference (LSD) reported below each table is the smallest difference in yield that can be considered a "true" difference. The most important factor is not the absolute number reported for a cotton variety's yield or fiber quality. The most important question to answer is "How did a variety yield relative to other varieties in the trial"? Another important number to look for is the test average yield. Considering a variety's performance relative to the average for the entire trial will help identify varieties that are above average at a given location.

Cotton varieties should be chosen by considering their performance across several locations and years of testing. Superior performance in one year can often indicate a good variety, but superior performance over multiple years indicates consistency and reliability. Varieties are currently introduced at a rapid pace and have shorter life spans than in the past. Data for the newest varieties are often not available for multiple years. For these new varieties that do not yet have multi-year performance records it is best to consider performance averaged across several locations during its first year of testing.

Grower experience with a past variety is important for several reasons. Cotton varieties have different growth habits and can be locally adapted to a small area. Experience with a variety should be considered, but newer varieties that perform well in OVT's should be considered as well.

Selecting Varieties

The LSU AgCenter identifies the top tier of high yielding varieties at each location by the use of a statistical test called the least significant difference (LSD). A probability level of 5% is used, which means that the test correctly identifies variety performance for that location with 95% certainty. The group of varieties that is statistically the highest yielding is shown in each table in bold print. To identify promising varieties that are new to the market and which have only one year of testing in the OVTs, a multi-location analysis is performed. New entries that yielded within one LSD0.05 of the top yielding entry in the across location analysis are in bold print.

The following table lists (alphabetically) all early and medium maturity varieties that are among the top varieties in yield performance in the 2008 OVT's at one or more locations. Not all varieties are included in the top yielding tier at all locations; therefore producers should review the data tables for variety performance at the closest location that is most representative of their individual farms and also review the statewide multilocation yield averages for consistency of performance over a range of environments.

Americot AM 1550 B2RF	FiberMax 1740 B2F	Seed Tec Genetics CT 210
	FiberMax 1773 LLB2	
Bayer Crop Sci. BCSX 1010LLB2	FiberMax 1845 LLB2	Stoneville 4288 B2F
Bayer Crop Sci. BCSX 1035LLB2		Stoneville 5288 B2F
	LA 1110035 RS	Stoneville 5458 B2RF
CG 3220B2RF		
	PHX 5922 WRF	
Dynagro DG 2570 B2RF		
	Phytogen 315RF	
Deltapine 141 B2RF	Phytogen 367WRF	
Deltapine 174 RF	Phytogen PHY 370 WR	
Deltapine 0912 B2RF	Phytogen PHY 375 WRF	
Deltapine 0920 B2RF	Phytogen PHY 425 WRF	
Deltapine 0924 B2RF	Phytogen PHY 485 WRF	
Deltapine 0935 B2RF	Phytogen 525 RF	
Deltapine 0949 B2RF	Phytogen 565 WRF	
	Phytogen 569 WRF	

Transgenic Traits

Roundup Ready. Transgenic lines are available for glyphosate tolerance, usually indicated as Roundup Ready ('R' or 'RR') or Roundup Ready Flex ('RF' or 'F'). The Flex varieties have been commercially available since 2006 and after this year will completely replace all Roundup Ready varieties. Roundup Ready Flex varieties exhibit increased tolerance, particularly in the fruiting stage, to glyphosate applications. Roundup Ready Flex labeling allows over-the-top applications of glyphosate to Roundup Ready Flex varieties into the bloom stage and does not restrict contact with the stem for directed applications. Read and follow the label closely for specific restrictions. Moreover, growers should consult the label for specific glyphosate formulations for permitted use on Roundup Ready Flex varieties. The Roundup Ready varieties that you have grown accustomed to will still have the label restrictions for glyphosate applications.

Weed control is a major factor in producing highyielding, high quality cotton. Because of the increased flexibility for applying glyphosate over-the-top to Roundup Ready Flex varieties, some growers may opt to wait until weeds emerge and get some size before making applications. This is not recommended, particularly for early season weed control. Early weed competition can severely reduce yield. Glyphosate is very effective on a wide range of species, particularly when they are small. Applications should therefore be timed to weed size and not other factors. Moreover, reliance on one mode of action for weed control is not recommended and has lead to herbicide resistant weeds. Because of the concerns with glyphosate-resistant weeds, the use of other herbicides in addition to glyphosate in Roundup Ready Flex cotton is strongly encouraged. Consult the LSU AgCenter's 2010 "Controlling Weeds in Cotton" for more information on controlling weeds in Roundup Ready Flex cotton.

Liberty link. Varieties with the designation 'LL' in their brand name are transgenic varieties tolerant to over-the-top applications of Ignite 280 or Ignite (glufosinate). These varieties can be managed in a Liberty Link weed control program, which is covered in more detail in the LSU AgCenter's 2010 "Controlling Weeds in Cotton" publication. Liberty Link cotton is tolerant to Ignite, but will be injured by applications or drift of glyphosate. On farms or in areas where Liberty Link cotton is grown near Roundup Ready or Roundup Ready Flex cotton, care should be taken to avoid confusion of the herbicide systems and reduce the potential for mistaken applications or drift.

Bollgard and Bollgard 2. Varieties with the designation 'B', 'BG', 'B2', or 'BG2' in their brand name are cotton lines that are tolerant to the Louisiana caterpillar pest, tobacco budworm. These varieties should not need any supplemental insecticide sprays for control of this pest. Varieties with the Bollgard 2 (B2, BG2) traits are also tolerant to the bollworm, soybean looper, and beet armyworm. For these and other caterpillar pests, beware that under high and persistent populations, supplemental chemical control strategies will be necessary to provide

satisfactory management. In addition, the insecticidal traits in Bollgard and Bollgard 2 varieties have no activity against non-caterpillar pests (thrips, aphids, plant bugs, stink bugs, spider mites) and those pests must be managed with conventional IPM practices.

WideStrike. Phytogen varieties with the designation 'W' or 'WS2' in their brand name are cotton lines that are tolerant to the Louisiana caterpillar pests, tobacco budworm and fall armyworm. These varieties should not need any supplemental insecticide sprays for control of these pests. The other characteristics and insect management recommendations previously mentioned for Bollgard and Bollgard 2 traits remain the same for the WideStrike trait in Phytogen varieties.

Seeding Rate and Stand

Two to three plants per row foot is the ideal final plant population in 30- to 40-inch rows. To achieve this population, seeding rates should be slightly higher based on the actual stated germination. Seed size varies and the seed number per pound of seed ranges from a low of 3700 up to a high of 5800; therefore seeding rates have to be based on seed number per acre and not pounds of seed per acre. To ensure the best seedling emergence, planting should be scheduled during the most favorable conditions possible for existing and forecasted temperature and soil moisture.

Approximate number of seed per pound of									
selected cotton varieties.									
Variety	Seed/lb	Variety	Seed/lb						
DP 0912B2RF	4,600	PHY 375 WRF	4,800						
DP 0920B2RF	5,000	PHY 485 WRF	4,850						
DP 0924B2RF	4,800	PHY 565 WRF	5,000						
DP 0935B2RF	5,000	PHY 367 WRF	4,900						
DP 0949B2RF	5,000	PHY 370 WR	4,800						
DP 141B2RF	5,045	PHX 5922 WRF	5,000						
DP 143B2RF	5,011	ST 4288 B2RF	3,982						
DP 161B2RF	5,383	ST 4427 B2RF	4,336						
DP 174RF	4,784	ST 4498 B2RF	4,776						
DP 555BGRR	5,868	ST 4554 B2RF	4,765						
FM 1740B2F	4,382	ST 5288 B2F	5,750						
FM 1845LLB2	4,049	ST 5458 B2RF	4,108						
FM 1773LLB2	4,850								

Most cotton seed sold will have at least an 80% germination reported on the bag. This is the result of the warm germination test. Field conditions, however, are typically more adverse than laboratory tests. The cool germination test can approximate adverse field

conditions and is a measure of seed vigor. Results from the cool germination test are not reported on the bag but can be obtained from the seed company. Growers are encouraged to request this information. Being aware of the results of the cool germination test is more important than determining what is actually a good or bad cool germ. For example, a seed lot with 85% cool germ is more vigorous than one with a 65% cool germ. If the 65% cool germ lot is planted in good, warm conditions, however, overall germination is likely to be as high as the 85% lot. Under adverse conditions, the 85% lot is likely to germinate at a much higher rate than the 65% lot. A somewhat arbitrary division of the cool germ test results is shown in the following table:

COOL GERMINATION %	VIGOR
>80	Excellent
65-80	Good
50-65	Acceptable – plant under good conditions
<50	Poor – most companies will not sell this seed

Remember, a cotton seed is a living organism that is used as delivery mechanism for genetic traits, transgenic technology, and often pesticide seed treatments. Care should be taken to preserve and plant high quality seed to insure adequate plant stand.

Table 1. Two-year performance of early maturing cotton varieties across six Louisiana locations in 2008 and 2009.

	Location								
	Alexan	dria	St. Jos	eph	Winn	sboro	Average		
Variety	Silt Loam	Clay	Silt Loam	Clay	Irrigated	Non-irrig	Yield		
				Ib lint/ac	re				
PHY 370 WR	1217	1144	899	1226	1134	622	1040		
ST 4288B2F	1274	1101			1161	606	1036		
PHY 375 WRF	1213	1141	907	1147	1079	645	1022		
PHY 485 WRF	1272	1074	966		1104	610	1005		
DG 2570 B2RF	1149	1192			1077	569	997		
ST 4498 B2RF	1196	1136	811	1068	1019	474	95 I		
CG 3220 B2RF	1125	1101	815	1101	981	518	940		
DG 2520 B2RF	1140	977	820	1052	969	458	903		
CG 3020 B2RF	1070	1064	776	1008	931	510	893		
CG 4020 B2RF	1059	1021	873	964	918	490	888		
PHY 315 RF [‡]	979	640	907	1173	1061	552	885		
PHY 425 RF [‡]	789	602	968	1230	1128	521	873		
CG 3035 RF [‡]	897	615	889	1206	1087	531	871		
CG 3520 B2RF	1058	978	843	1013	876	442	868		
AM 1550 B2RF	1165	1123			1049	562			
CT 210	903	716			1080	464			
DP 0924 B2RF	1269	1128							
FM 1740 B2F	1419	1258			1175	541			
ST 5458 B2RF*	1292	1237			1172	600			
Mean	1123	1008	873	1016	1049	536	934		
LSD _{0.05}	100	119	73	87	91	76	155		
CV(%)	8.5	10.5	8.3	6.9	8.6	14.6	36		

[†]Lint yields in bold type within a column are not significantly different from the highest yielding variety based on the Least Significant Difference Test at P = 0.05.

*Full season variety included for comparison.

[‡]Low yields of non-BT varieties at the Alexandria location in 2009 were related to a combination of extremely high worm infestations and wet weather that prevented timely insecticide applications.

Table 2. One-year performance of early maturing cotton varieties across six Louisiana locations in 2009.

	Location									
	Alexan	dria	St. Jose	St. Joseph		Winnsboro				
Variety	Silt Loam	Clay	Silt Loam	Clay	Irrigated	Non-irrig	Yield †			
	lb lint/acre									
DP 0912 B2RF	1178	1796	906	1209	1073	771	1156			
FM 1740 B2F	1136	1783	708	1187	1069	678	1094			
ST 5458 B2RF*	966	1794	700	1032	1203	854	1092			
DP 0924 B2RF	1077	1564	896	1150	1013	763	1077			
DP 0920 B2RF	1086	1690	855	1076	1081	670	1076			
PHY 485 WRF	963	1537	894	1022	1174	820	1068			
ST 4288 B2F	1010	1574	872	1077	1095	733	1060			
DP 0935 B2RF*	898	1627		942	1050	725	1048			
BCSX 1035 LLB2	1009	1738	866	986	1154	520	1046			
PHY 370 WR	1013	1561	796	1026	1060	809	1044			
PHY 375 WRF	1001	1510	835	1031	1065	797	1040			
DG 2570 B2RF	840	1697	738	967	1063	740	1008			
BCSX 1010 B2F	997	1551	743	960	1054	671	996			
PHY 367 WRF	897	1567	663	1005	1019	768	987			
AM 1550 B2RF	963	1592	628	984	990	721	980			
CG 3220 B2RF	908	1637	725	973	899	675	970			
ST 4498 B2RF	924	1541	720	971	946	599	950			
CG 3020 B2RF	922	1533	785	856	818	670	931			
DG 2520 B2RF	1004	1305	753	900	913	588	911			
CG 4020 B2RF	859	1377	773	895	886	661	909			
CG 3520 B2RF	884	1376	775	839	872	618	894			
PHY 315 RF [‡]	458	708	834	976	1046	724	791			
PHY 425 RF [‡]	294	616	902	1061	4	642	776			
CG 3035 RF [‡]	564	655	758	996	1002	644	770			
CT 210 [‡]	577	600	819	906	1084	548	756			
Mean	897	1437	790	1001	1031	696	977			
LSD _{0.05}	119	209	76	82	123	135	194			
CV(%)	9.4	10.3	6.8	5.8	8.5	13.8	17			

[†]Lint yields in bold type within a column are not significantly different from the highest yielding variety based on the Least Significant Difference Test at P = 0.05.

*Full season varieties included for comparison.

[‡]Low lint yields of non-BT varieties at the Alexandria location in 2009 were related to a combination of extremely high worm infestations and wet weather that prevented timely insecticide applications.

Table 3. Two-year performance of medium maturing cotton varieties across six Louisiana locations in 2008 and 2009.

	Location								
	Alexandria		St. Jos	eph	Winn	Average			
Variety	Silt Loam	Clay	Silt Loam	Clay	Irrigated	Non-irrig	Yield		
				Ib lint/ac	re				
DP 174 RF [‡]	971	871	1054	I 480	1128	660	1119		
ST 5458 B2RF	1265		900	1220	1207	506	1117		
DP 141 B2RF	1206	1216	701	1250	1154	593	1113		
ST 5288 B2F	1344	1222			1234	576	1094		
DP 161 B2RF	1123	1154	865	1207	1043	435	1043		
FM 1845 LLB2	1142	1318			1116	481	1014		
DP 0935 B2RF	1161				1078	482	907		
PHY 525 RF [‡]		543							
Mean	1173	1054	887	1290	1137	533	1058		
LSD _{0.05}	109 136		85	152	92	59	157		
CV(%)	9.0	10.3	8.1	11.0	8.2	11.0	30.0		

[†]Lint yields in bold type within a column are not significantly different from the highest yielding variety based on the Least Significant Difference Test at P = 0.05.

[‡]Low lint yields of these non-BT varieties at the Alexandria location in 2009 were related to a combination of extremely high worm infestations and wet weather that prevented timely insecticide applications.

Table 4. One-year performance of medium maturing cotton varieties across six Louisiana locations in 2009.

		Location							
	Alexan	dria	St. Jos	eph	Winnsboro		Average		
Variety	Silt Loam	Clay	Silt Loam	Clay	Irrigated	Non-irrig	Yield		
				Ib lint/ac	re				
DP 0949 B2RF	1187	1928	696	1153	1023	738	1121		
FM 1740 B2F*	1214	1881	666	1215	1106	633	1119		
ST 5288 B2F	1122	1683	764	1043	1243	810	1111		
DP 0912 B2RF*	998	1779	732	1056	1148	716	1072		
ST 5458 B2RF	926	1879	672	991	1118	686	1045		
PHX 5922 WRF	1065	1740	594	1075	1069	717	1043		
PHY 370 WR*	995	1761	720	1012	965	725	1030		
PHY 565W RF	1005	1494	600	1052	1144	769	1011		
DP 141 B2RF	945	1662	367	1015	1098	790	980		
DP 174 RF	425 [‡]	960	822	1115	1104	898	980		
FM 1845 LLB2	877	1798	663	917	949	596	967		
BCSX 1025 LLB2	819	1537	604	942	994	744	940		
DP 0935 B2RF	962	1517	602	922	921	631	926		
BCSX 1015 LLB2	948	1715	603	855	905	495	920		
FM 1773 LLB2	883	1460	660	879	1026	593	917		
DP 161 B2RF	904	1612	552	928	815	586	900		
BCSX 1010 B2F	921	1363	597	990	861	635	895		
LA 1110017	222‡	579	523	985	1037	683	761		
PHY 525 RF	285‡	456	620	952	951	806	757		
LA 1110035 RS	470‡	648	397	975	937	819	755		
Mean	858	1472	622	1004	1174	703	952		
LSD0.05	126	220	161	114	126	112	166		
CV(%)	10.4	10.6	18.1	8.0	8.7	11.0	29		

 \pm Lint yields in bold type within a column are not significantly different from the highest yielding variety based on the Least Significant Difference Test at P = 0.05.

*Early season varieties included for comparison.

‡Low lint yields of non-BT varieties at the Alexandria location in 2009 were related to a combination of extremely high worm infestations and wet weather that prevented timely insecticide applications.

Table AI. Performance of early maturing cotton varieties on Coushatta silt loam at the LSU AgCenter Dean Lee Research Station, Alexandria, LA in 2008 and 2009.

					2009 Fiber Properties			
		Lint Yield	1		Length			
Variety	2009	2008	2 yr. avg	Lint	UHM	Micronaire	Strength	Uniformity
		lb/ac -		%	in.		g/tex	%
DP 0912 B2RF	1178			40	1.11	4.95	27.7	82.4
FM 1740 B2F	1136	1703	1419	41	1.16	4.85	28.0	82.8
DP 0920 B2RF	1086			41	1.12	4.75	26.7	82.8
DP 0924 B2RF	1077	1461	1269	39	1.12	4.87	27.8	82.9
PHY 370 WR	1013	1421	1217	41	1.10	4.70	28.3	83.I
ST 4288 B2F	1010			38	1.16	4.70	27.7	82.6
BCSX 1035 LLB2	1009			39	1.15	5.17	29.1	83.5
DG 2520 B2RF	1004	1277	1140	38	1.14	4.42	26.9	82.7
PHY 375 WRF	1001	1425	1213	40	1.13	4.52	27.8	82.7
BCSX 1010 B2F	997			39	1.16	4.40	27.7	82.4
ST 5458 B2RF*	966	1618	1292	40	1.15	4.85	28.1	82.6
AM 1550 B2RF	963	1368	1165	41	1.15	4.70	26.7	82.4
PHY 485 WRF	963	1581	1272	39	1.16	4.50	29.2	83.7
ST 4498 B2RF	924	1468	1196	39	1.11	4.52	30.0	83.0
CG 3020 B2R	922	1218	1070	37	1.10	4.25	26.4	82.0
CG 3220 B2RF	908	1343	1125	39	1.12	4.62	27.0	82.4
DP 0935 B2RF*	898			41	1.13	4.80	27.7	82.6
PHY 367 WRF	897			39	1.14	4.25	29.0	82.2
CG 3520 B2RF	884	1233	1058	36	1.13	4.42	26.8	82.8
CG 4020 B2RF	859	1260	1059	38	1.13	4.40	26.7	82.5
DG 2570 B2RF	840	1459	1149	40	1.12	4.80	27.9	82.6
CT 210 [±]	577	1244	903	38	1.15	4.15	31.9	83.4
CG 3035 RF [±]	564	1230	897	40	1.15	3.80	30.3	84. I
PHY 315 RF [±]	458	1501	979	41	1.16	3.82	28.7	83.5
PHY 425 RF [±]	294	1284	789	37	1.18	3.75	31.3	84.2
Mean	897	I 407	1123	39	1.13	4.51	28.2	82.9
LSD (P=.05)	119	183	100	2.0	0.03	0.25	1.3	0.8
CV	9.4	8.0	8.5	2.9	1.6	3.9	3.2	0.7

Lint yields in bold type within a column are not significantly different from the highest yielding variety based on the Least Significant Difference Test at P= 0.05.

*Full season varieties included for comparison.

[†]Planted 4 May 2009. Harvested 3 November 2009.

Table A2. Performance of medium maturing cotton varieties on Coushatta silt loam at the LSU AgCenter Dean Lee Research Station, Alexandria, LA in 2008 and 2009.

					2009 Fiber Properties			
	Lint Yield				Length			
Variety	2009 †	2008	2 yr. avg	Lint	UHM	Micronaire	Strength	Uniformity
		lb/ac -		%	in.		g/tex	%
FM 1740 B2F*	1214			42	1.15	4.80	28.2	82.4
DP 0949 B2RF	1187			42	1.18	4.40	29.6	83.2
ST 5288 B2F	1122			40	1.16	4.70	28.9	83.2
PHX 5922 WRF	1065			40	1.18	4.22	31.9	84.0
PHY 565 WRF	1005			40	1.18	3.97	30.6	83.0
DP 0912 B2RF*	998			38	1.12	4.97	28.1	82.9
PHY 370 WR*	995			41	1.15	4.45	29.0	83.0
DP 0935 B2RF	962	1360	1161	41	1.14	4.60	28.0	82.4
BCSX 1015 LLB2	948			38	1.24	4.75	29.1	83.3
DP 141 B2RF	945	1467	1206	39	1.18	4.22	28.9	82.6
ST 5458 B2RF	926	1605	1265	41	1.15	4.72	28.5	82.0
BCSX 1010 B2F	921			41	1.17	4.52	28.3	82.7
DP 161 B2RF	904	1342	1123	38	1.17	4.37	29.5	83.0
FM 1773 LLB2	883			38	1.21	4.77	29.7	83.4
FM 1845 LLB2	877			40	1.22	4.77	29.8	84.6
BCSX 1025 LLB2	819			40	1.23	4.62	29.8	84.0
LA1110035 RS [±]	470			38	1.25	3.90	33.2	84.9
DP 174 RF [±]	425	1517	971	41	1.22	3.90	29.5	84.4
PHY 525 RF [±]	285			39	1.23	3.22	31.2	83.1
LA1110017 [±]	222			37	1.24	3.80	33.4	85.6
Mean	858	1215	1173	40	1.19	4.38	29.8	83.3
LSD (P=.05)	126	163	109	3.0	0.04	0.38	1.5	1.2
CV	10.4	9.5	9.0	5.3	2.2	6.0	3.7	1.0

Lint yields in bold type within a column are not significantly different from the highest yielding variety based on the Least Significant Difference Test at P= 0.05.

*Early season varieties included for comparison.

[†]Planted 4 May 2009. Harvested 3 November 2009.

Table A3. Performance of early maturing cotton varieties on Moreland Clay loam at the LSU AgCenter Dean Lee Research Station, Alexandria, LA in 2008 and 2009.

					2009 Fiber Properties			
		Lint Yield	ł		Length			
Variety	2009	2008	2 yr. avg	Lint	UHM	Micronaire	Strength	Uniformity
		lb/ac		%	in.		g/tex	%
DP 0912 B2RF	1796			40	1.13	4.72	27.5	82.4
ST 5458 B2RF*	1794	679	1237	40	1.17	4.85	28.5	82.9
FM 1740 B2F	1783	732	1258	40	1.17	4.77	28.3	83.4
BCSX 1035 LLB2	1738			39	1.16	5.22	29.5	84.0
DG 2570 B2RF	1697	688	1192	40	1.14	4.70	28. I	82.8
DP 0920 B2RF	1690			41	1.16	4.55	27.4	83.0
CG 3220 B2RF	1637	565	1101	39	1.16	4.55	27.8	83.0
DP 0935 B2RF*	1627			41	1.13	4.47	27.0	82.6
AM 1550 B2RF	1592	654	1123	41	1.12	4.57	26.2	82.8
ST 4288 B2F	1574			38	1.16	4.77	27.3	82.7
PHY 367 WRF	1567			39	1.16	4.35	28.6	82.9
DP 0924 B2RF	1564	692	1128	39	1.13	4.7	28.0	82.6
PHY 370 WR	1561	727	1144	41	1.13	4.77	28. I	82.9
BCSX 1010 B2F	1551			39	1.15	4.42	26.0	81.9
ST 4498 B2RF	1541	732	1136	39	1.13	4.47	29.4	83.0
PHY 485 WRF	1537	612	1074	38	1.18	4.52	29.1	83.7
CG 3020 B2R	1533	595	1064	37	1.37	4.10	26.3	82.8
PHY 375 WRF	1510	773	1141	40	1.16	4.37	26.8	82.5
CG 4020 B2RF	1377	666	1021	38	1.16	4.27	26.9	82.8
CG 3520 B2RF	1376	581	978	36	1.16	4.35	27.0	82.8
DG 2520 B2RF	I 305	649	977	38	1.17	4.17	26.8	82.4
PHY 315RF [±]	708	572	640	40	1.16	4.52	26.6	82.9
CG 3035 RF [±]	655	575	615	40	1.13	4.42	26.9	82.1
PHY 425 RF [±]	616	588	602	37	1.15	4.95	28.9	83.5
CT 210 [±]	600	833	716	37	1.14	4.37	26.7	82.0
Mean	1437	662	1008	39	1.15	4.6	27.6	82.8
LSD (P=.05)	209	152	119	1.5	0.02	0.2	0.9	0.8
CV	10.3	4.	10.5	2.7	1.4	2.9	2.3	0.7

Lint yields in bold type within a column are not significantly different from the highest yielding variety based on the Least Significant Difference Test at P= 0.05. *Full season varieties included for comparison.

[†]Planted 24 April 2009. Harvested. 30 September 2009.

Table A4. Performance of medium maturing cotton varieties on Moreland Clay loam at the LSU AgCenter Dean Lee Research Station, Alexandria, LA in 2008 and 2009.

	2009 Fiber Properties							
	Lint Yield				Length			
Variety	2009 ^{†±}	2008	2 yr. avg	Lint	UHM	Micronaire	Strength	Uniformity
		lb/ac -		%	in.		g/tex	%
DP 0949 B2RF	1928			42	1.18	4.60	28.0	83.2
FM 1740 B2F*	1881			42	1.15	4.75	27.7	82.9
ST 5458 B2RF	1879	653	1266	42	1.15	4.85	27.8	82.5
FM 1845 LLB2	1798			40	1.22	4.72	28.7	83.9
DP 0912 B2RF*	1779			40	1.13	4.80	27.7	82.9
PHY 370 WR*	1761			41	1.13	4.72	27.9	83.I
PHX 5922 WRF	1740			40	1.15	4.52	29.7	82.8
BCSX 1015 LLB2	1715			38	1.23	4.60	27.I	82.6
ST 5288 B2F	1683			41	1.17	4.50	26.7	82.5
DP 141 B2RF	1662	770	1216	39	1.22	4.20	26.7	82.0
DP 161 B2RF	1612	695	1154	38	1.20	4.30	28.2	82.8
BCSX 1025 LLB2	1537			41	1.22	4.40	27.0	82.4
DP 0935 B2RF	1517			41	1.15	4.20	26.4	82.0
PHY 565 WRF	1494			40	1.19	4.22	29.7	83.I
FM 1773 LLB2	1460			38	1.23	4.67	28.6	83.4
BCSX 1010 B2F	1363			38	1.18	4.45	26.8	82.7
DP 174 RF±	960	782	871	44	1.17	4.67	26.0	82.9
LA1110035 RS±	648			38	1.21	4.65	28.0	83.5
LAIII0017±	579			37	1.22	4.60	28.6	84.3
PHY 525 RF±	456	630	543	39	1.18	4.27	27.5	82. I
Mean	1472	714	1054	40	1.18	4.54	27.7	82.9
LSD (P=.05)	220	143	136	1.3	0.02	0.21	0.9	0.7
CV	10.6	12.1	10.3	2.4	1.4	3.2	2.4	0.6

Planted 24 April 2009. Harvested 30 September 2009.

Table WI. Performance of early maturing cotton varieties on irrigated Gigger silt loam at the LSU AgCenter Macon Ridge Research Station, Winnsboro, LA in 2008 and 2009.

					2009 Fiber	2009 Fiber Properties			
		Lint Yield	1		Length				
Variety	2009 [†]	2008	2 yr. avg	Lint	UHM	Micronaire	Strength	Uniformity	
		lb/ac		%	in.		g/tex	%	
ST 5458B2RF*	1203	1142	1172	41	1.12	5.I	27.4	82.5	
PHY 485WRF	1174	1035	1104	39	1.13	5.0	30. I	83.4	
BCSX 1035LLB2	1154			39	1.13	5.3	29.7	82.9	
PHY 425RF	1141	1115	1128	39	1.14	5.I	29.9	82.9	
ST 4288B2F	1095			37	1.15	4.7	27.4	83.I	
CT 210	1084	1075	1080	38	1.09	5.0	27.5	81.9	
DP 0920B2RF	1801			41	1.10	5.I	26. I	82.7	
DP 0912B2RF	1073			39	1.08	5.2	27.2	82.5	
FM 1740B2F	1069	1282	1175	41	1.12	4.9	27.8	83.0	
PHY 375WRF	1065	1094	1079	40	1.10	4.7	26.8	82.2	
DG 2570B2RF	1063	1092	1077	40	1.10	5.I	28.3	82.6	
PHY 370WR	1060	1209	1134	39	1.09	5.0	29.2	82.8	
BCSX 1010 B2F	1054			37	1.13	4.7	25.7	82.0	
DP 0935B2RF*	1050			40	1.10	4.9	27.2	82.4	
PHY 315RF	1046	1077	1061	41	1.11	4.6	26.8	82.4	
PHY 367WRF	1019			39	1.13	4.4	28.6	83.0	
DP 0924B2RF	1013			39	1.08	5.I	28. I	83.0	
CG 3035RF	1002	1173	1087	40	1.09	4.9	28.2	82.8	
AM 1550B2RF	990	1109	1049	39	1.09	5.0	26.4	82.4	
ST 4498B2RF	946	1093	1019	37	1.10	4.6	31.9	83.I	
DG 2520B2RF	913	1026	969	38	1.13	4.6	26.3	82.8	
CG 3220B2RF	899	1064	981	38	1.10	4.9	27.0	82.4	
CG 4020B2RF	886	950	918	37	1.12	4.6	26.9	82.7	
CG 3520B2RF	872	881	876	36	1.12	4.5	26.5	82.3	
CG 3020B2RF	818	1044	931	35	1.10	4.5	26.5	83.0	
Mean	1031	1092	1049	39	1.11	4.9	27.7	82.7	
LSD (P=.05)	123	126	91	1.0	0.02	0.1	1.1	0.8	
CV	8.5	8.1	8.6	1.9	1.5	2.2	2.8	0.7	

*Full season varieties included for comparison.

[†]Planted 29 April 2009. Harvested 29 September 2009.

Table W2. Performance of medium maturing cotton varieties on irrigated Gigger silt loam at the LSU AgCenter Macon Ridge Research Station, Winnsboro, LA in 2008 and 2009

				2009 Fiber Properties				
		Lint Yield	1		Length			
Variety	2009	2008	2 yr. avg	Lint	UHM	Micronaire	Strength	Uniformity
		lb/ac		%	in.		g/tex	%
ST 5288 B2F	1243			42	1.15	5.0	27.5	82.8
DP 0912 B2RF*	1148			39	1.08	5.3	27.9	82.8
PHY 565 WRF	1144			41	1.17	4.6	30.9	83.7
ST 5458 B2RF	1118	1297	I 207	41	1.15	5.I	28. I	82.5
FM 1740 B2F*	1106			41	1.15	4.8	28.5	83.2
DP 174 RF	1104	1151	1128	43	1.16	4.8	28.5	82.9
DP 141B2 RF	1098	1211	1154	39	1.20	4.6	27.8	82.6
PHX 5922 WRF	1069			40	1.15	4.9	30.6	83.2
LA 1110017	1037			37	1.22	4.7	31.9	84.4
FM 1773 LLB2	1026			39	1.20	4.9	28.5	83.3
DP 0949 B2RF	1023			41	1.11	5.0	27.4	82.4
BCSX 1025 LLB2	994			40	1.20	4.6	28.2	83.I
PHY 370 WR*	965			39	1.09	5.0	28.9	82.4
PHY 525 RF	951			42	1.15	4.5	29.2	82.7
FM 1845 LLB2	949			38	1.20	4.8	30.2	84.3
LA 1110035 RS	937			38	1.19	4.7	30.3	84.0
DP 0935B2 RF	921	1234	1078	41	1.10	4.8	27.0	82.8
BCSX 1015 LLB2	905			38	1.21	4.6	26.8	82.7
BCSX 1010 B2F	861			37	1.13	4.8	26.8	82. I
DP 161B2 RF	815	1272	1043	38	1.16	4.9	27.7	83.I
Mean	1021	1174	1137	39.5	1.16	4.8	28.5	83.0
LSD (P=.05)	126	100	92	1.0	0.03	0.1	1.06	0.9
CV	8.7	6.7	8.2	1.86	1.99	2.0	2.64	0.8

*Early season varieties included for comparison.

[†]Planted 29 April 2009. Harvested 30 September 2009.

Table W3. Performance of early maturing cotton varieties on non-irrigated Gigger silt loam at the LSU AgCenter Macon Ridge Research Station, Winnsboro, LA in 2008 and 2009.

						2009 Fiber	iber Properties			
		Lint Yield	1		Length					
Variety	2009	2008	2 yr. avg	Lint	UHM	Micronaire	Strength	Uniformity		
		lb/ac		%	in.		g/tex	%		
ST 5458 B2RF*	854	347	600	43	1.11	5.0	28.4	82.5		
PHY 485 WRF	820	400	610	39	1.11	4.7	30.9	83.3		
PHY 370 WR*	809	436	622	40	1.08	4.8	29.7	82.9		
PHY 375 WRF	797	493	645	44	1.08	4.7	27.9	82.2		
DP 0912 B2RF	771			42	I.07	4.9	28.2	82.7		
PHY 367 WRF	768			41	1.14	4.5	30.7	83.4		
DP 0924 B2RF	763			41	1.10	4.9	29.1	83.1		
DG 2570 B2RF	740	399	569	41	I.08	4.7	29.8	83.I		
ST 4288 B2F	733			42	1.14	4.5	27.9	83.4		
DP 0935 B2RF*	725			41	1.11	4.7	29.1	82.9		
PHY 315 RF	724	380	552	43	1.09	4.7	27.3	82.2		
AM 1550 B2RF	721	404	562	39	1.09	4.4	26.8	82.6		
FM 1740 B2F	678	404	541	43	1.10	4.9	27.7	82.7		
CG 3220 B2RF	675	361	518	39	1.09	4.8	28.6	83.3		
BCSX 1010 B2F	671			40	1.15	4.4	26.7	82.7		
CG 3020 B2RF	670	350	510	40	1.09	4.4	27.6	83.2		
DP 0920 B2RF	670			41	1.09	4.9	26.5	82.8		
CG 4020 B2RF	661	320	490	43	1.12	4.5	26.9	82.6		
CG 3035 RF	644	418	531	41	1.08	4.8	29.9	82.6		
PHY 425 RF	642	40 I	521	39	1.12	4.9	30.8	83.1		
CG 3520 B2RF	618	266	442	38	1.11	4.6	27.5	82.7		
ST 4498 B2RF	599	349	474	38	1.10	4.7	33.5	83.I		
DG 2520 B2RF	588	329	458	39	1.10	4.6	27.2	82.6		
CT 210	548	381	464	38	1.11	4.3	29.4	82.8		
BCSX 1035 LLB2	528			38	1.11	4.7	29.4	82.8		
Mean	696	387	536	40.3	1.1	4.7	28.7	82.8		
LSD (P=.05)	135	121	76	1.3	0.02	0.2	I.2	0.8		
CV	13.8	22.2	14.6	5.7	1.6	3.8	3.0	0.7		

*Full season varieties included for comparison.

[†]Planted 29 April 2009. Harvested 16 September 2009.

Table W4. Performance of medium maturing cotton varieties on non-irrigated Gigger silt loam at the LSU AgCenter Macon Ridge Research Station, Winnsboro, LA in 2008 and 2009.

	Lint Yield				Length			
Variety	2009	2008	2 yr. avg	Lint	UHM	Micronaire	Strength	Uniformity
		lb/ac -		%	in.		g/tex	%
DP 174 RF	898	424	660	42	1.13	4.7	27.3	83.4
LA 1110035 RS	819			37	1.19	4.4	33.2	83.8
ST 5288 B2F	810			40	1.09	5.3	28.5	81.7
PHY 525 RF	806			38	1.16	4.4	31.4	82.7
DP 141 B2RF	790	396	593	38	1.17	4.6	28.4	82.5
PHY 565 WRF	769			38	1.13	4.8	31.8	82.9
BCSX 1025 LLB2	744			38	1.19	4.3	28.7	83.3
DP 0949 B2RF	738			40	1.11	5.0	29.9	82.3
PHY 370 WR*	725			38	1.01	5.5	30.0	82.9
PHX 5922 WRF	717			38	1.09	4.7	31.0	83.6
DP 0912 B2RF*	716			38	1.08	4.9	28. I	82.6
ST 5458 B2RF	686	327	506	40	1.11	5.2	28.5	82.6
LA 1110017	683			35	I.20	4.4	33.2	84.3
BCSX 1010 B2F	635			38	1.14	4.5	26.6	82.6
FM 1740 B2F*	633			39	1.12	5.2	29.8	83.5
DP 0935 B2RF	631	334	482	38	1.11	4.9	28.9	82.8
FM 1845 LLB2	596			37	1.18	4.6	31.0	84. I
FM 1773 LLB2	593			37	1.19	4.6	30.3	83.0
DP 161 B2RF	586	285	435	36	1.15	4.9	29.9	82.9
BCSX 1015 LLB2	495			35	1.20	4.1	28.3	83.5
Mean	703	331	533	38	1.14	4.7	29.6	83.0
LSD (P=.05)	112	95	59	0.9	0.03	0.4	I.2	0.7
CV	11	20.2	11.0	1.7	1.61	5.8	2.7	0.6

*Early season varieties included for comparison.

[†]Planted 29 April 2009. Harvested 16 September 2009.

Table SJI. Performance of early maturing cotton varieties on Commerce silt loam at the LSU AgCenter Northeast Research Station, St. Joseph, LA in 2007 and 2009.

					2009 Fiber	iber Properties			
		Lint Yield	4		Length				
Variety	2009	2007±	2 yr. avg	Lint	UHM	Micronaire	Strength	Uniformity	
		lb/ac -		%	in.		g/tex	%	
DP 0912 B2RF	906			39	1.11	4.9	28.0	82.4	
PHY 425 RF	902	1034	968	37	1.17	4.6	30.4	83.6	
DP 0924 B2RF	896			39	1.09	4.8	27.4	82.2	
PHY 485 WRF	894	1037	966	38	1.15	4.5	30.5	83.0	
ST 4288 B2F	872			38	1.16	4.7	28.I	82.5	
BCSX 1035 LLB2	866			39	1.14	4.8	30.7	83.3	
DP 0920 B2RF	855			40	1.12	4.5	26.9	82.9	
PHY 375 WRF	835	978	907	39	1.12	4.3	27.7	82.9	
PHY 315 RF	834	980	907	40	1.14	4.4	28.2	82.5	
CT 210	819			39	1.12	4.7	28.7	82.3	
PHY 370 WR	796	1001	899	39	1.12	4.6	29.3	82.8	
CG 3020 B2RF	785	767	776	36	1.12	4.3	27.1	82.9	
CG 3520 B2RF	775	911	843	37	1.13	4.3	27.7	83.3	
CG 4020 B2RF	773	972	873	38	1.15	4.3	27.1	82.7	
CG 3035 RF	758	1020	889	40	1.12	4.6	28.4	82.8	
DG 2520 B2RF	753	886	820	36	1.15	4.5	27.0	82.8	
BCSX 1010 B2F	743			36	1.15	4.3	28. I	83.0	
DG 2570 B2RF	738			39	1.13	4.6	29.1	82.7	
CG 3220 B2RF	725	905	815	38	1.12	4.6	27.9	83.1	
ST 4498 B2RF	720	901	811	38	1.13	4.5	31.8	83.2	
FM 1740 B2F	708			41	1.16	4.6	28.4	83.3	
ST 5458 B2RF*	700			38	1.18	4.5	29.9	82.8	
PHY 367 WRF	663			38	1.15	4.3	29.7	82.5	
AM 1550 B2RF	628			37	1.11	4.6	27.3	82.9	
DP 0935 B2RF*				39	1.12	4.9	27.7	82.0	
Mean	790	945	873	38	1.13	4.6	28.5	82.8	
LSD (P=.05)	76	123	73	1.3	0.03	0.2	1.1	0.7	
CV	6.8	8.3	8.3	2.4	1.7	3.6	2.8	0.6	

Lint yields in bold type within a column are not significantly different from the highest yielding variety based on the Least Significant Difference Test at P= 0.05.

*Full season varieties included for comparison.

[†]Planted 24 April 2009. Harvested 26 October and 2nd pick on 11 November 2009.

Table SJ2. Performance of medium maturing cotton varieties on Commerce silt loam at the LSU AgCenter Northeast Research Station, St. Joseph, LA in 2007 and 2009.

						2009 Fiber	Properties	
	Lint Yield			Length				
Variety	2009	2007±	2 yr. avg	Lint	UHM	Micronaire	Strength	Uniformity
		lb/ac -		%	in.		g/tex	%
DP 174 RF	822	1229	1025	40	1.21	4.3	28.3	83.I
ST 5288 B2F	764			40	1.15	4.6	28.3	81.9
DP 0912 B2RF*	732			38	1.09	4.8	27.6	82.6
PHY 370 WR*	720			38	1.10	4.7	28.9	82.5
DP 0949 B2RF	696			40	1.14	4.6	29.0	82.9
ST 5458 B2RF	672	1127	900	39	1.17	4.4	29.1	82.4
FM 1740 B2F*	666			39	1.19	4.6	29.4	83.4
FM 1845 LLB2	663			36	I.23	4.5	30.0	83.6
FM 1773 LLB2	660			38	1.21	4.5	29.2	82.8
PHY 525 RF	620			39	1.21	3.5	30.3	82.3
BCSX 1025 LLB2	604			38	I.22	4.2	29.6	82.6
BCSX 1015 LLB2	603			36	I.25	4.4	28.4	82. I
DP 0935 B2RF	602			39	1.14	4.6	28.7	82.0
PHY 565 WRF	600			40	I.20	3.8	30.6	82.8
BCSX 1010 B2F	597			36	1.16	4.2	29.1	83.0
PHX 5922 WRF	594			48	1.16	4.1	29.7	83.0
DP 161 B2RF*	552	1100	826	37	1.16	4.2	29.2	82.8
LA 1110017	523			35	1.23	4.1	31.4	84. I
LA 1110035 RS	397			35	I.25	4.2	31.5	83.8
DP 141 B2RF	367	1035	701	37	1.22	3.6	29.6	82.6
Mean	622	1002	887	40	1.18	4.3	29.4	82.8
LSD (P=.05)	161	159	85	0.7	0.02	0.3	1.1	0.7
CV	18.1	10.0	8.1	1.2	1.2	4.2	2.7	0.6

*Early season varieties included for comparison.

[†]Planted 24 April 2009. Harvested 28 October and 2nd pick on 14 November 2009.

Table SJ3. Performance of early maturing cotton varieties on Sharkey clay at the LSU AgCenter Northeast Research Station, St. Joseph, LA. in 2007 and 2009.

2009 Fiber Propertie					Properties			
		Lint Yield	ł		Length			
Variety	2009	2007±	2 yr. avg	Lint	UHM	Micronaire	Strength	Uniformity
		lb/ac -		%	in.		g/tex	%
DP 0912 B2RF	1209			41	1.09	4.8	28.2	82.8
FM 1740 B2F	1187			42	1.14	4.3	29.0	83.3
DP 0924 B2RF	1150			42	1.10	4.6	28.8	82.8
ST 4288 B2F	1077			40	1.13	4.5	28.2	82.6
DP 0920 B2RF	1076			42	1.12	4.5	26.8	82.6
PHY 425 RF	1061	1398	1230	40	1.13	4.8	29.9	83.6
ST 5458 B2RF*	1032			41	1.14	4.5	29.6	83.0
PHY 375 WRF	1031	1264	1147	42	1.11	4.2	27.3	82.4
PHY 370 WR*	1026	1427	1226	41	1.09	4.6	28.7	83.2
PHY 485 WRF	1022	I 408		39	1.14	4.6	30.0	83.I
PHY 367 WRF	1005			41	1.14	4.2	28.7	82.9
CG 3035 RF	996	1417	1206	42	1.13	4.5	28.8	83.I
BCSX 1035 LLB2	986			40	1.12	4.9	30.0	83.I
AM 1550 B2RF	984			41	1.09	4.4	27.2	82.6
PHY 315 RF	976	1370	1173	42	1.12	4.2	27.6	82.2
CG 3220 B2RF	973	1229	1101	41	1.14	4.6	28.5	83.3
ST 4498 B2RF	971	1165	1068	41	1.11	4.3	31.4	83.4
DG 2570 B2RF	967			42	1.11	4.5	29.1	83.2
BCSX 1010 B2F	960			38	1.16	4.3	28.2	82.9
DP 0935 B2RF*	942			42	1.12	4.6	28.0	82.4
CT 210	906			41	1.11	4.5	29.1	82. I
DG 2520 B2RF	900	1204	1052	39	1.14	4.3	26.9	83.0
CG 4020 B2RF	895	1034	964	39	1.15	4.3	27.3	83.3
CG 3020 B2RF	856	1160	1008	37	1.12	4.1	27.0	82.6
CG 3520 B2RF	839	1187	1013	39	1.14	4.4	27.8	83.7
						0.2	1.0	0.7
Mean	1001	1305	1016	41	1.12	4.5	28.5	82.9
LSD (P=.05)	82	228	87	0.7	0.02	0.2	1.0	0.7
CV	5.8	9.6	6.9	1.4	1.3	2.4	2.4	0.6

Lint yields in bold type within a column are not significantly different from the highest yielding variety based on the Least Significant Difference Test at P= 0.05.

*Full season varieties included for comparison.

[†]Planted 24 April 2009. Harvested 19 November 2009.

Table SJ4. Performance of medium maturing cotton varieties on Sharkey clay at the LSU AgCenter Northeast Research Station, St. Joseph, LA in 2007 and 2009.

						2009 Fiber	per Properties			
		Lint Yield	1		Length					
Variety	2009	2007±	2 yr. avg	Lint	UHM	Micronaire	Strength	Uniformity		
		lb/ac -		%	in.		g/tex	%		
FM 1740 B2F*	1215			42	1.14	4.4	29.1	83.2		
DP 0949 B2RF	1153			43	1.15	4.6	30.0	83.3		
DP 174 RF	1115	1783	1449	43	1.18	4.3	28.4	83.4		
PHX 5922 WRF	1075			41	1.13	4.3	30.7	83.5		
DP 0912 B2RF*	1056			41	1.12	4.7	28.8	83.0		
PHY 565 WRF	1052			42	1.16	3.9	30.7	83.2		
ST 5288 B2F	1043			41	1.14	4.3	28.3	82.3		
DP 141 B2RF	1015	I 485	1250	39	1.20	3.8	29.3	82.5		
PHY 370 WR*	1012			41	1.11	4.4	28.7	82.6		
ST 5458 B2RF	991	1542	1266	40	1.15	4.5	29.2	82.7		
BCSX 1010 B2F	990			38	1.16	4.3	28.7	83.5		
LA 1110017	985			39	1.21	4.3	31.7	84.2		
LA 1110035 RS	975			39	I.22	4.4	30.6	84.2		
PHY 525 RF	952			42	1.19	3.7	30.6	83.6		
BCSX 1025 LLB2	942			41	1.21	4.1	29.4	83.7		
DP 161 B2RF	928	1487	1207	40	1.19	4.2	29.6	83.6		
DP 0935 B2RF	922			42	1.13	4.4	28. I	82.8		
FM 1845 LLB2	917			39	I.20	4.3	30.5	83.9		
FM 1773 LLB2	879			40	I.20	4.5	29.3	82.8		
BCSX 1015 LLB2	855			39	I.24	4.3	28.5	83.4		
Mean	1004	1458	1290	40	1.17	4.3	29.5	83.3		
LSD (P=.05)	114	263	152	1.0	0.02	0.2	0.9	0.8		
CV	8.0	9.0	11.0	1.1	1.4	3.4	2.2	0.7		

Lint yields in bold type within a column are not significantly different from the highest yielding variety based on the Least Significant Difference Test at P= 0.05.

*Early season varieties included for comparison.

[†]Planted 24 April 2009. Harvested 12 November 2009.

This material was prepared by the following LSU AgCenter personnel:

Dr. Donald J. Boquet, Professor and Interim Cotton Specialist, Macon Ridge Research Station
Dr. Ernie L. Clawson, Assistant Professor, Northeast Research Station
Dr. B. Rogers Leonard, Professor, Macon Ridge Research Station
Mr. James Hayes, Research Associate, Red River Research Station
Mr. Ivan Dickson, Cotton Fiber Lab

Assisted by the following Research Associates: Brad Guillory, Christopher Hardy John Stapp, Tim Talbot, Brandi Woolam

Visit our Web site: www.lsuagcenter.com

Louisiana State University Agricultural Center William B. Richardson, Chancellor Louisiana Agricultural Experiment Station David J. Boethel, Vice Chancellor and Director Louisiana Cooperative Extension Service Paul D. Coreil, Vice Chancellor and Director

Pub. 2135 (600) 1/10 Rev.

Issued in furtherance of Cooperative Extension work, Acts of Congress of May 8 and June 30, 1914, in cooperation with the United States Department of Agriculture. The Louisiana Cooperative Extension Service provides equal opportunities in programs and employment.