Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes

Publication Overview
TitleDevelopment of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes
AuthorsZhai C, Xu P, Zhang X, Guo Q, Zhang X, Xu Z, Shen X
TypeJournal Article
Journal NameTAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Year2015
CitationZhai C, Xu P, Zhang X, Guo Q, Zhang X, Xu Z, Shen X. Development of Gossypium anomalum-derived microsatellite markers and their use for genome-wide identification of recombination between the G. anomalum and G. hirsutum genomes. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2015 May 9.

Abstract

KEY MESSAGE
We reported the first development of Gossypium anomalum -derived microsatellite markers and identification of recombination between sexually incompatible species by a synthesized hexaploid on genome level. To continue to develop improved cotton varieties, it is essential to transfer desired characters from diploid wild cotton species such as Gossypium anomalum to cultivated allotetraploid cotton species. However, interspecific reproductive barriers limit gene transfer between species. In a previous study, we used colchicine treatment to produce a synthesized hexaploid derived from an interspecific hybrid between Gossypium hirsutum and G. anomalum and demonstrated its hybridity and doubled status using morphological, cytological and molecular marker methods. In the current study, to effectively monitor G. anomalum genome components in the G. hirsutum background, we developed 5974 non-redundant G. anomalum-derived SSR primer pairs using RNA-Seq technology, which were combined with a publicly available physical map. Based on this combined map and segregation data from the BC2F1 population, we identified a set of 230 informative G. anomalum-specific SSR markers distributed on the chromosomes, which cover 95.72 % of the cotton genome. After analyzing BC2F1 segregation data, 50 recombination types from 357 recombination events were identified, which cover 81.48 % of the corresponding G. anomalum genome. A total of 203 recombination events occurred on chromosome 11, accounting for 56.86 % of the recombination events on all chromosomes. Recombination hotspots were observed at marker intervals JAAS1148-NAU5100 on chromosome 1 and JAAS0426-NAU998 on chromosome 2. Therefore, all G. anomalum chromosomes are capable of recombining with At chromosomes in G. hirsutum. This study represents an important step towards introgressing desirable traits into cultivated cotton from the wild cotton species G. anomalum.

Features
This publication contains information about 6,654 features:
Feature NameUniquenameType
JAAS0501JAAS0501genetic_marker
JAAS0502JAAS0502genetic_marker
JAAS0503JAAS0503genetic_marker
JAAS0504JAAS0504genetic_marker
JAAS0505JAAS0505genetic_marker
JAAS0506JAAS0506genetic_marker
JAAS0507JAAS0507genetic_marker
JAAS0508JAAS0508genetic_marker
JAAS0509JAAS0509genetic_marker
JAAS0510JAAS0510genetic_marker
JAAS0511JAAS0511genetic_marker
JAAS0512JAAS0512genetic_marker
JAAS0513JAAS0513genetic_marker
JAAS0514JAAS0514genetic_marker
JAAS0515JAAS0515genetic_marker
JAAS0516JAAS0516genetic_marker
JAAS0517JAAS0517genetic_marker
JAAS0518JAAS0518genetic_marker
JAAS0519JAAS0519genetic_marker
JAAS0520JAAS0520genetic_marker
JAAS0521JAAS0521genetic_marker
JAAS0522JAAS0522genetic_marker
JAAS0523JAAS0523genetic_marker
JAAS0524JAAS0524genetic_marker
JAAS0525JAAS0525genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
(86-1 x G. anomalum) x Su8289, BC2F1 (2015)
Properties
Additional details for this publication include:
Property NameValue
Publication ModelPrint-Electronic
ISSN1432-2242
eISSN1432-2242
Publication Date2015 May 9
Journal AbbreviationTheor. Appl. Genet.
LanguageEnglish
Language AbbrENG
Publication TypeJournal Article