Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium).

Publication Overview
TitleGenetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium).
AuthorsMei M; Syed NH; Gao W; Thaxton PM; Smith CW; Stelly DM; Chen ZJ
TypeJournal Article
Journal NameTheoretical and Applied Genetics
Volume108
Issue(2)
Year2004
Page(s)280 291
CitationMei M, Syed N, Gao W, Thaxton P, Smith C, Stelly D, Chen Z. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theoretical and applied genetics. 2004; 108(2):280-291
Publication CodeTAG-108-280

Abstract

Cotton, the leading natural fiber crop, is largely produced by two primary cultivated allotetraploid species known as Upland or American cotton (Gossypium hirsutum L.) and Pima or Egyptian cotton (G. barbadense L.). The allotetraploid species diverged from each other and from their diploid progenitors (A or D genome) through selection and domestication after polyploidization. To analyze cotton AD genomes and dissect agronomic traits, we have developed a genetic map in an F2 population derived from interspecific hybrids between G. hirsutum L. cv. Acala-44 and G. barbadense L. cv. Pima S-7. A total of 392 genetic loci, including 333 amplified fragment length polymorphisms (AFLPs), 47 simple sequence repeats (SSRs), and 12 restriction fragment length polymorphisms (RFLPs), were mapped in 42 linkage groups, which span 3,287 cM and cover approximately 70\\% of the genome. Using chromosomal aneuploid interspecific hybrids and a set of 29 RFLP and SSR framework markers, we assigned19 linkage groups involving 223 loci to 12 chromosomes. Comparing four pairs of homoeologous chromosomes, we found that with one exception linkage distances in the A-subgenome chromosomes were larger than those in their D-subgenome homoeologues, reflecting higher recombination frequencies and/or larger chromosomes in the A subgenome. Segregation distortion was observed in 30 out of 392 loci mapped in cotton. Moreover, approximately 29\\% of the RFLPs behaved as dominant loci, which may result from rapid genomic changes. The cotton genetic map was used for quantitative trait loci (QTL) analysis using composite interval mapping and permutation tests. We detected seven QTLs for six fiber-related traits\\; five of these were distributed among A-subgenome chromosomes, the genome donor of fiber traits. The detection of QTLs in both the A subgenome in this study and the D subgenome in a previous study suggests that fiber-related traits are controlled by the genes in homoeologous genomes, which are subjected to selection and domestication. Some chromosomes contain clusters of QTLs and presumably contribute to the large amount of phenotypic variation that is present for fiber-related traits.
Features
This publication contains information about 337 features:
Feature NameUniquenameType
AAGCTA1AAGCTA1genetic_marker
AAGCTA2AAGCTA2genetic_marker
AAGCTA4AAGCTA4genetic_marker
AAGCTC1AAGCTC1genetic_marker
AAGCTC2AAGCTC2genetic_marker
AAGCTC3AAGCTC3genetic_marker
AAGCTC4AAGCTC4genetic_marker
AAGCTC5AAGCTC5genetic_marker
AAGCTC6AAGCTC6genetic_marker
AAGCTC8AAGCTC8genetic_marker
AAGCTG12AAGCTG12genetic_marker
AAGGCG1AAGGCG1genetic_marker
AAGGCG2AAGGCG2genetic_marker
AAGGCG3AAGGCG3genetic_marker
AAGGCG4AAGGCG4genetic_marker
AAGGCG5AAGGCG5genetic_marker
AAGGCG7AAGGCG7genetic_marker
AAGGCG9AAGGCG9genetic_marker
ACAAGC1ACAAGC1genetic_marker
ACAAGC2ACAAGC2genetic_marker
ACAAGC3ACAAGC3genetic_marker
ACAAGC4ACAAGC4genetic_marker
ACAAGC6ACAAGC6genetic_marker
ACAAGC8ACAAGC8genetic_marker
ACACAC1ACACAC1genetic_marker

Pages

Projects
This publication contains information about 1 projects:
Project NameDescription
AP-F2-2004
Featuremaps
This publication contains information about 1 maps:
Map Name
Acala-44 x Pima S-7, F2 (2004)
Properties
Additional details for this publication include:
Property NameValue
Publication ModelPrint-Electronic
ISSN0040-5752
Publication TypeJournal Article
Publication Date2004
Language Abbreng
Journal AbbreviationTheor. Appl. Genet.
Publication TypeResearch Support, Non-U.S. Gov't
Journal CountryGermany
LanguageEnglish
pISSN0040-5752
Publication CodeTAG-108-280
Published LocationGermany
eISSN1432-2242
Journal AliasTheoretical and Applied Genetics. Theoretische und angewandte Genetik
Journal CodeTAG
Keywordsfiber quality, simple sequence length polymorphism, Gossypium barbadense, interspecific hybridization, quantitative trait loci, chromosome mapping, genetic markers, amplified fragment length polymorphism, microsatellite repeats, restriction fragment length polymorphism, loci, linkage groups, segregation distortion, lint cotton, Gossypium hirsutum; Gossypium barbadense; interspecific hybridization; quantitative trait loci; chromosome mapping; genetic markers; amplified fragment length polymorphism; microsatellite repeats; restriction fragment length polymorphism; loci; linkage groups; segregation distortion; lint cotton; fiber quality; simple sequence length polymorphism; Chromosome Segregation; Chromosomes, Plant; DNA, Plant; Genome, Plant; Gossypium/*genetics/*growth & development; *Linkage (Genetics); Phenotype; Polymorphism, Genetic; Polymorphism, Restriction Fragment Length; *Polyploidy; Random Amplified Polymorphic DNA Technique; molecular linkage map; polyploid formation; hirsutum-l; allotetraploid cotton; quantitative traits; genome evolution; aflp markers; rflp; populations